diff --git a/blueoil/converter/templates/src/func/average_pool.cpp b/blueoil/converter/templates/src/func/average_pool.cpp index 2aa8943a7..291f4ff21 100644 --- a/blueoil/converter/templates/src/func/average_pool.cpp +++ b/blueoil/converter/templates/src/func/average_pool.cpp @@ -25,7 +25,7 @@ void func_AveragePool(const TensorView& input, struct avg_pooling_parameters app) { Measurement::Start("AveragePool"); - assert (app.kernel_depth == 1 && "kernel depth 1 is not supported."); + assert (app.kernel_depth == 1 && "kernel depth != 1 is not supported."); assert (app.input_depth == app.kernel_depth * app.output_channels && \ "input_depth must equal kernel_depth * output_channels."); diff --git a/blueoil/converter/templates/src/func/max_pool.cpp b/blueoil/converter/templates/src/func/max_pool.cpp index 62f51c686..167da64d9 100644 --- a/blueoil/converter/templates/src/func/max_pool.cpp +++ b/blueoil/converter/templates/src/func/max_pool.cpp @@ -27,7 +27,7 @@ void max_pooling( struct max_pooling_parameters p) { - assert (p.kernel_depth == 1 && "kernel depth 1 is not supported."); + assert (p.kernel_depth == 1 && "kernel depth != 1 is not supported."); assert (p.input_depth == p.kernel_depth * p.output_channels && \ "input_depth must equal kernel_depth * output_channels."); diff --git a/docs/converter/supported_ops.md b/docs/converter/supported_ops.md index fad38c7c0..6a7fcde0b 100644 --- a/docs/converter/supported_ops.md +++ b/docs/converter/supported_ops.md @@ -13,10 +13,9 @@ ### Tensorflow Ops with Limitations - **[tf.layers.AveragePooling2D](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/layers/AveragePooling2D)** - Currently, support only `2D`. - - Do ***not*** support `kernel depth = 1`. + - Do ***not*** support `kernel depth != 1`. - **[tf.concat](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/concat)** - Do ***not*** support concat of mixed data types (e.g., quantized values and float values). - - All tensor channels must be equal. - If inputs are quantized, requires `Each input channel size = multiple of 32`. - **[tf.layers.Conv2D](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/layers/Conv2D)** - Support only convolution `2D`. @@ -32,13 +31,13 @@ - **[tf.linalg.matmul](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/linalg/matmul)** - Do ***not*** support `scalar`. - **[tf.layers.max_pooling2d](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/layers/max_pooling2d)** - - Currently, support only `2D`. + - Currently, support only `2D`. + - Do ***not*** support `kernel depth != 1`. - **[tf.pad](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/pad)** - Supports only `channel-wise paddings`. - **[tf.nn.space_to_depth](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/nn/space_to_depth)** - For quantized tensor, requires `output depth = (multiple of block_size^2 * 32)` or `(block_size^2 * {8, 16})`. - **[tf.split](https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/split)** - - Currently, all of output tensors must have `same` shape. - For quantized tensor, requires `number of channel of each output tensor = multiple of 32`. ### Tensorflow Ops without Limitations