diff --git a/docs/tutorial/image_cls.md b/docs/tutorial/image_cls.md index bffe471b9..b16e0d791 100644 --- a/docs/tutorial/image_cls.md +++ b/docs/tutorial/image_cls.md @@ -106,7 +106,7 @@ If configuration finishes, the configuration file is generated in the `cifar10_t Train your model by running `blueoil train` with model configuration. $ docker run --rm \ - -e CUDA_VISIBLE_DEVICES=0 \ + --gpus '"device=0"' \ -v $(pwd)/cifar:/home/blueoil/cifar \ -v $(pwd)/config:/home/blueoil/config \ -v $(pwd)/saved:/home/blueoil/saved \ @@ -114,7 +114,8 @@ Train your model by running `blueoil train` with model configuration. blueoil train -c config/cifar10_test.py Just like init, set the value of `{TAG}` to the value obtained by `docker images`. -Change the value of `CUDA_VISIBLE_DEVICES` according to your environment. +Change the value of `--gpus '"device="'` according to your environment. +For detail check the official [documentation](https://docs.docker.com/config/containers/resource_constraints/#gpu). When training has started, the training log and checkpoints are generated under `./saved/{MODEL_NAME}`. The value of `{MODEL_NAME}` will be `{Configuration file}_{TIMESTAMP}`. diff --git a/docs/tutorial/image_det.md b/docs/tutorial/image_det.md index 437f14d6c..d8dc4e83c 100644 --- a/docs/tutorial/image_det.md +++ b/docs/tutorial/image_det.md @@ -67,7 +67,7 @@ If configuration finishes, the configuration file is generated in the `objectdet Train your model by running `blueoil train` with a model configuration. $ docker run --rm \ - -e CUDA_VISIBLE_DEVICES=0 \ + --gpus '"device=0"' \ -v $(pwd)/openimages_face:/home/blueoil/openimages_face \ -v $(pwd)/config:/home/blueoil/config \ -v $(pwd)/saved:/home/blueoil/saved \ @@ -75,7 +75,8 @@ Train your model by running `blueoil train` with a model configuration. blueoil train -c config/objectdetection.py Just like init, set the value of `{TAG}` to the value obtained by `docker images`. -Change the value of `CUDA_VISIBLE_DEVICES` according to your environment. +Change the value of `--gpus '"device="'` according to your environment. +For detail check the official [documentation](https://docs.docker.com/config/containers/resource_constraints/#gpu). When training has started, the training log and checkpoints are generated under `./saved/{MODEL_NAME}`. The value of `{MODEL_NAME}` will be `{Configuration file}_{TIMESTAMP}`. diff --git a/docs/tutorial/image_keypoint_detection.md b/docs/tutorial/image_keypoint_detection.md index 9b37b40fe..75364604d 100644 --- a/docs/tutorial/image_keypoint_detection.md +++ b/docs/tutorial/image_keypoint_detection.md @@ -61,7 +61,7 @@ If configuration finishes, the configuration file is generated in the `keypoint_ Train your model by running `blueoil train` with a model configuration. $ docker run --rm \ - -e CUDA_VISIBLE_DEVICES=0 \ + --gpus '"device=0"' \ -e DATA_DIR=/home/blueoil \ -e OUTPUT_DIR=/home/blueoil/saved \ -v /storage/dataset/MSCOCO_2017:/home/blueoil/MSCOCO_2017 \ @@ -71,7 +71,8 @@ Train your model by running `blueoil train` with a model configuration. blueoil train -c config/keypoint_detection_demo.py Just like init, set the value of `{TAG}` to the value obtained by `docker images`. -Change the value of `CUDA_VISIBLE_DEVICES` according to your environment. +Change the value of `--gpus '"device="'` according to your environment. +For detail check the official [documentation](https://docs.docker.com/config/containers/resource_constraints/#gpu). When training has started, the training log and checkpoints are generated under `./saved/{MODEL_NAME}`. The value of `{MODEL_NAME}` will be `{Configuration file}_{TIMESTAMP}`. diff --git a/docs/tutorial/image_seg.md b/docs/tutorial/image_seg.md index 8db3500c9..c31340026 100644 --- a/docs/tutorial/image_seg.md +++ b/docs/tutorial/image_seg.md @@ -97,7 +97,7 @@ If configuration finishes, the configuration file is generated in the `camvid.py Train your model by running `blueoil train` command with model configuration. $ docker run --rm \ - -e CUDA_VISIBLE_DEVICES=0 \ + --gpus '"device=0"' \ -v $(pwd)/CamVid:/home/blueoil/CamVid \ -v $(pwd)/config:/home/blueoil/config \ -v $(pwd)/saved:/home/blueoil/saved \ @@ -105,7 +105,8 @@ Train your model by running `blueoil train` command with model configuration. blueoil train -c config/camvid.py Just like init, set the value of `{TAG}` to the value obtained by `docker images`. -Change the value of `CUDA_VISIBLE_DEVICES` according to your environment. +Change the value of `--gpus '"device="'` according to your environment. +For detail check the official [documentation](https://docs.docker.com/config/containers/resource_constraints/#gpu). When training has started, the training log and checkpoints are generated under `./saved/{MODEL_NAME}`. The value of `{MODEL_NAME}` will be `{Configuration file}_{TIMESTAMP}`.