-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbert.py
217 lines (180 loc) · 7.17 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#! -*- coding:utf-8 -*-
# 情感分析例子,利用MLM+P-tuning
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.layers import Loss, Embedding
from bert4keras.tokenizers import Tokenizer
from bert4keras.models import build_transformer_model, BERT
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from keras.layers import Lambda, Dense
maxlen = 128
batch_size = 32
config_path = '/root/kg/bert/chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_roberta_wwm_ext_L-12_H-768_A-12/vocab.txt'
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
text, label = l.strip().split('\t')
D.append((text, int(label)))
return D
# 加载数据集
train_data = load_data('datasets/sentiment/sentiment.train.data')
valid_data = load_data('datasets/sentiment/sentiment.valid.data')
test_data = load_data('datasets/sentiment/sentiment.test.data')
# 模拟标注和非标注数据
train_frac = 0.01 # 标注数据的比例
num_labeled = int(len(train_data) * train_frac)
unlabeled_data = [(t, 2) for t, l in train_data[num_labeled:]]
train_data = train_data[:num_labeled]
# train_data = train_data + unlabeled_data
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# 对应的任务描述
mask_idx = 5
desc = ['[unused%s]' % i for i in range(1, 9)]
desc.insert(mask_idx - 1, '[MASK]')
desc_ids = [tokenizer.token_to_id(t) for t in desc]
pos_id = tokenizer.token_to_id(u'很')
neg_id = tokenizer.token_to_id(u'不')
def random_masking(token_ids):
"""对输入进行随机mask
"""
rands = np.random.random(len(token_ids))
source, target = [], []
for r, t in zip(rands, token_ids):
if r < 0.15 * 0.8:
source.append(tokenizer._token_mask_id)
target.append(t)
elif r < 0.15 * 0.9:
source.append(t)
target.append(t)
elif r < 0.15:
source.append(np.random.choice(tokenizer._vocab_size - 1) + 1)
target.append(t)
else:
source.append(t)
target.append(0)
return source, target
class data_generator(DataGenerator):
"""数据生成器
"""
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids, batch_output_ids = [], [], []
for is_end, (text, label) in self.sample(random):
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
if label != 2:
token_ids = token_ids[:1] + desc_ids + token_ids[1:]
segment_ids = [0] * len(desc_ids) + segment_ids
if random:
source_ids, target_ids = random_masking(token_ids)
else:
source_ids, target_ids = token_ids[:], token_ids[:]
if label == 0:
source_ids[mask_idx] = tokenizer._token_mask_id
target_ids[mask_idx] = neg_id
elif label == 1:
source_ids[mask_idx] = tokenizer._token_mask_id
target_ids[mask_idx] = pos_id
batch_token_ids.append(source_ids)
batch_segment_ids.append(segment_ids)
batch_output_ids.append(target_ids)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
batch_output_ids = sequence_padding(batch_output_ids)
yield [
batch_token_ids, batch_segment_ids, batch_output_ids
], None
batch_token_ids, batch_segment_ids, batch_output_ids = [], [], []
class CrossEntropy(Loss):
"""交叉熵作为loss,并mask掉输入部分
"""
def compute_loss(self, inputs, mask=None):
y_true, y_pred = inputs
y_mask = K.cast(K.not_equal(y_true, 0), K.floatx())
accuracy = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
accuracy = K.sum(accuracy * y_mask) / K.sum(y_mask)
self.add_metric(accuracy, name='accuracy')
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
loss = K.sum(loss * y_mask) / K.sum(y_mask)
return loss
class PtuningEmbedding(Embedding):
"""新定义Embedding层,只优化部分Token
"""
def call(self, inputs, mode='embedding'):
embeddings = self.embeddings
embeddings_sg = K.stop_gradient(embeddings)
mask = np.zeros((K.int_shape(embeddings)[0], 1))
mask[1:9] += 1 # 只优化id为1~8的token
self.embeddings = embeddings * mask + embeddings_sg * (1 - mask)
outputs = super(PtuningEmbedding, self).call(inputs, mode)
self.embeddings = embeddings
return outputs
class PtuningBERT(BERT):
"""替换原来的Embedding
"""
def apply(self, inputs=None, layer=None, arguments=None, **kwargs):
if layer is Embedding:
layer = PtuningEmbedding
return super(PtuningBERT,
self).apply(inputs, layer, arguments, **kwargs)
# 加载预训练模型
model = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
model=PtuningBERT,
with_mlm=True
)
for layer in model.layers:
if layer.name != 'Embedding-Token':
layer.trainable = False
# 训练用模型
y_in = keras.layers.Input(shape=(None,))
output = keras.layers.Lambda(lambda x: x[:, :10])(model.output)
outputs = CrossEntropy(1)([y_in, model.output])
train_model = keras.models.Model(model.inputs + [y_in], outputs)
train_model.compile(optimizer=Adam(6e-4))
train_model.summary()
# 预测模型
model = keras.models.Model(model.inputs, output)
# 转换数据集
train_generator = data_generator(train_data, batch_size)
valid_generator = data_generator(valid_data, batch_size)
test_generator = data_generator(test_data, batch_size)
class Evaluator(keras.callbacks.Callback):
def __init__(self):
self.best_val_acc = 0.
def on_epoch_end(self, epoch, logs=None):
val_acc = evaluate(valid_generator)
if val_acc > self.best_val_acc:
self.best_val_acc = val_acc
model.save_weights('best_model_bert.weights')
test_acc = evaluate(test_generator)
print(
u'val_acc: %.5f, best_val_acc: %.5f, test_acc: %.5f\n' %
(val_acc, self.best_val_acc, test_acc)
)
def evaluate(data):
total, right = 0., 0.
for x_true, _ in data:
x_true, y_true = x_true[:2], x_true[2]
y_pred = model.predict(x_true)
y_pred = y_pred[:, mask_idx, [neg_id, pos_id]].argmax(axis=1)
y_true = (y_true[:, mask_idx] == pos_id).astype(int)
total += len(y_true)
right += (y_true == y_pred).sum()
return right / total
if __name__ == '__main__':
evaluator = Evaluator()
train_model.fit_generator(
train_generator.forfit(),
steps_per_epoch=len(train_generator) * 50,
epochs=1000,
callbacks=[evaluator]
)
else:
model.load_weights('best_model_bert.weights')