Robust Conversion from Matrix to Axis Angle Form

by Fan Jiang

1 Introduction

Robust conversion from matrix to axis-angle form is not trivial because the transform is plagued with numeric instabilities. In this document we will review the normal form of such a conversion, and provide detailed instructions on how to properly do it.

1.1 Basic Conversion

It is known that the conversion from a SO(3) matrix can be written as

Theorem 1. The rotation angle θ can be calculated as

$$\theta = \arccos\left(\frac{\operatorname{tr}(R) - 1}{2}\right) \tag{1}$$

where tr(R) is the trace of the rotation matrix.

As such, the normalized rotation axis is:

Theorem 2. The normalized rotation axis for a rotation matrix R is

$$\omega = \frac{\theta}{2\sin(\theta)} \begin{pmatrix} R_{3,2} - R_{2,3} \\ R_{1,3} - R_{3,1} \\ R_{2,1} - R_{1,2} \end{pmatrix}$$
(2)

where $R_{i,j}$ are the elements in the matrix.

2 Problem

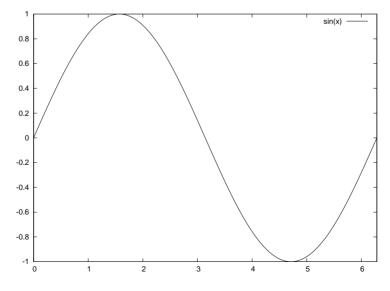


Figure 1. $\sin(x)$

It's pretty straightforward that when $\theta \to 0 + k\pi$, (2) will not work because $\sin(\theta)$ will be 0. From (1) we know that, since $\theta = k\pi$,

$$\operatorname{arccos}\left(\frac{\operatorname{tr}(R) - 1}{2}\right) = k\pi$$
$$\frac{1}{2}(\operatorname{tr}(R) - 1) = \pm 1$$
$$\operatorname{tr}(R) = 1 \pm 2 \tag{3}$$

Thus we know that there are two singular points, -1 and 3, for the axis-angle conversion. Next thing is how to deal with these two points.

3 Properties of the SO(3) transform at the singular points

3.1 $\theta \rightarrow 0$

For $\theta = 0$ (tr(R) = 3) the solution is simple: We simply take the Taylor expansion of

$$\frac{\theta}{2\sin(\theta)}$$

at $\theta \rightarrow 0$. Note this is not a simple Taylor expansion, but a limit. We can do this in Maxima:

Maxima 5.45.1 https://maxima.sourceforge.io using Lisp SBCL 2.1.9 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information.

(%i1) $\theta: \operatorname{acos}\left(\frac{t-1}{2}\right)$ (%01) $\arccos\left(\frac{t-1}{2}\right)$ (%i2) mag: $\frac{\theta}{2\sin(\theta)}$ $\frac{\arccos\left(\frac{t-1}{2}\right)}{(t-1)^2}$

(%02)
$$\frac{\arccos\left(\frac{1}{2}\right)}{2\sqrt{1-\frac{(t-1)}{4}}}$$

(%i3) taylor(mag, t, 3, 3)

(%o3)
$$\frac{1}{2} - \frac{t-3}{12} + \frac{(t-3)^2}{60} - \frac{(t-3)^3}{280} + \cdots$$

Thus the solution around $\theta \rightarrow 0$ is

$$\frac{1}{2} - \frac{t-3}{12} + \frac{(t-3)^2}{60} \tag{4}$$

3.2 $\theta \rightarrow \pi$

The solution becomes a lot more complicated when at $\theta \to \pi$. This is because at this extreme point you have two solutions: you can go from both left and right of the unit circle!

Note 3. The trace tr(R) = -1 is negative.

In this case we can first convert R to quaternion, which is done by

$$(w,v) = \begin{pmatrix} \frac{1}{2r}(R_{c,b} - R_{b,c}) \\ \frac{1}{2}r \\ \frac{1}{2r}(R_{a,b} + R_{b,a}) \\ \frac{1}{2r}(R_{c,a} + R_{a,c}) \end{pmatrix}$$
(5)

where $r := \sqrt{1 + R_{a,a} - R_{b,b} - R_{c,c}}$, $a := \arg \max_{i \in \{1,2,3\}} R_{i,i}$, $b := (a+1) \mod 3$, $c := (a+2) \mod 3$. Normally we want the angle $\theta \in [0, \pi]$, thus we need to make sure that w > 0,

and now we can easily get the angle θ as

$$2\operatorname{atan2}\left(\sqrt{q_x^2 + q_y^2 + q_z^2}, w\right) \tag{6}$$

and now the magnitude of the vector is

$$|v| := \frac{\theta}{\sin(\theta/2)} \tag{7}$$

However, in GTSAM, we do the following simplification to avoid doing the atan2 (expensive).

First let's set that $q_x^2 + q_y^2 + q_z^2 + w^2 = a^2$. Thus we have (around w = 0) this Taylor expansion:

Maxima 5.45.1 https://maxima.sourceforge.io using Lisp SBCL 2.1.9 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information.

- (%i1) $\theta: 2 \operatorname{atan2}\left(\sqrt{a^2 w^2}, w\right)$ (%o1) $2 \operatorname{atan2}\left(\sqrt{a^2 - w^2}, w\right)$ (%i2) $\operatorname{scale:} \theta / \sin(\theta / 2)$ (%o2) $\frac{2 |a| \operatorname{atan2}\left(\sqrt{a^2 - w^2}, w\right)}{\sqrt{a^2 - w^2}}$ (%i3) $\operatorname{taylor}(\operatorname{scale} w = 0, 3)$
- (%i3) taylor(scale, w, 0, 3)

(%o3)
$$\frac{\pi |a|}{a} - \frac{2w}{a} + \frac{\pi w^2}{2a|a|} - \frac{4w^3}{3a^3} + \cdots$$

which indicates that we only need a correction term of $\pi - \frac{2}{a}w$ to get the true magnitude near π .

3.2.1 Verdict

In summary, the logmap (axis-angle form) can be computed as follows at tr(R) = -1.

First, we find the largest diagonal term $a := \arg \max_{i \in \{1,2,3\}} R_{i,i}$. This is required because we are approximately converting the matrix to quaternion form.

Now we calculate the axis-angle in two terms, scale and vector.

The scale is

$$\left(\pi - \frac{2}{a}w\right) \cdot \left(\frac{2}{r}\right) \tag{8}$$

and the vector is

$$v = \left(\begin{array}{c} r^2 \\ (R_{a,b} + R_{b,a}) \\ (R_{c,a} + R_{a,c}) \end{array}\right)$$

before permutation. (permutation is [a, a+1 mod 3, a+2 mod 3]) Since we calculate the unnormalized a a' in code:

$$2 a = \sqrt{4w^2 + (r)^2 + \left(\frac{1}{r}(R_{a,b} + R_{b,a})\right)^2 + \left(\frac{1}{r}(R_{c,a} + R_{a,c})\right)^2}$$
$$2 r a = \sqrt{((R_{c,b} - R_{b,c}))^2 + (2 + 2R_{a,a})^2 + ((R_{a,b} + R_{b,a}))^2 + ((R_{c,a} + R_{a,c}))^2} = a'$$

Thus

 $a\,{=}\,a'/(2\,r)$