-
This repo is for implementing MV3D from this paper: https://arxiv.org/abs/1611.07759 *
-
The MV3D implementation progress report can be found here
To clone,
$git clone --recursive https://github.com/bostondiditeam/MV3D.git
To pull, use
$git pull --recurse-submodules
- Key facts
- Workflow
- How to run
- Todo
- Issues
Please refer to here
- A Nvidia GPU card with computation capability > 3
- CUDA
- Python3.5 for MV3D related code
- Tensorflow-GPU(version>1.0)
- Python2.7 for ROS related script
├── data <-- all data is stored here. (Introduced in detail below)
│ ├── predicted <-- after prediction, results will be saved here.
│ ├── preprocessed <-- MV3D net will take inputs from here(after data.py)
│ └── raw <-- raw data
├── environment_cpu.yml <-- install cpu version.
├── README.md
├── saved_model <--- model and weights saved here.
├── src <-- MV3D net related source code
│ ├── config.py
│ ├── data.py
│ ├── didi_data
│ ├── kitti_data
│ ├── lidar_data_preprocess
│ ├── make.sh
│ ├── model.py
│ ├── mv3d_net.py
│ ├── net
│ ├── play_demo.ipynb
│ ├── __pycache__
│ ├── tracking.py <--- prediction after training.
│ ├── tracklets
│ └── train.py <--- training the whole network.
│── utils <-- all related tools put here, like ros bag data into kitti format
│ └── bag_to_kitti <--- Take lidar value from ROS bag and save it as bin files.
└── external_models <-- use as a submodule, basically code from other repos.
└── didi-competition <--- Code from Udacity's challenge repo with slightly modification, sync with Udacity's new
updates regularly.
├── predicted <-- after prediction, results will be saved here.
│ ├── didi <-- when didi dataset is used, the results will be put here
│ └── kitti <-- When kitti dataset used for prediction, put the results here
│ ├── iou_per_obj.csv <-- What will be evaluated for this competition, IoU score
│ ├── pr_per_iou.csv <--precision and recall rate per iou, currently not be evaluated by didi's rule
│ └── tracklet_labels_pred.xml <-- Tracklet generated from prediction pipeline.
├── preprocessed <-- Data will be fed into MV3D net (After processed by data.py)
│ ├── didi <-- When didi dataset is processed, save it here
│ └── kitti <-- When Kitti dataset is processed, save it here
│ ├── gt_boxes3d
│ └── 2011_09_26
│ └── 0005
| |___ 00000.npy
├ |── gt_labels
│ └── 2011_09_26
│ └── 0005
| |___ 00000.npy
| ├── rgb
│ └── 2011_09_26
│ └── 0005
| |___ 00000.png
| ├── top
│ └── 2011_09_26
│ └── 0005
| |___ 00000.npy
| └── top_image
| └── 2011_09_26
| └── 0005
| |___ 00000.png
└── raw <-- this strictly follow KITTI raw data file format, while seperated into didi and kitti dataset.
├── didi <-- will be something similar to kitti raw data format below.
└── kitti
└── 2011_09_26
├── 2011_09_26_drive_0005_sync
│ ├── image_02
│ │ ├── data
│ │ │ └── 0000000000.png
│ │ └── timestamps.txt
│ ├── tracklet_labels.xml
│ └── velodyne_points
│ ├── data
│ │ └── 0000000000.bin
│ ├── timestamps_end.txt
│ ├── timestamps_start.txt
│ └── timestamps.txt
├── calib_cam_to_cam.txt
├── calib_imu_to_velo.txt
└── calib_velo_to_cam.txt
After Tensorflow-GPU could work If you are not using Nvidia K520 GPU, you need to change "arch=sm_30" to other value in src/net/lib/setup.py and src/lib/make.sh in order to compiler *.so file right. Here is short list for arch values for different architecture.
# Which CUDA capabilities do we want to pre-build for?
# https://developer.nvidia.com/cuda-gpus
# Compute/shader model Cards
# 6.1 P4, P40, Titan X so CUDA_MODEL = 61
# 6.0 P100 so CUDA_MODEL = 60
# 5.2 M40
# 3.7 K80
# 3.5 K40, K20
# 3.0 K10, Grid K520 (AWS G2)
# Other Nvidia shader models should work, but they will require extra startup
# time as the code is pre-optimized for them.
CUDA_MODELS=30 35 37 52 60 61
Test your Tensorflow-GPU is running by"
import tensorflow as tf
sess = tf.Session()
print(tf.__version__) # version more than v1.
It runs without error message and show "successfully opened CUDA library libcublas.so.8.0 locally", then it is in CUDA successfully.
source activate didi
sudo chmod 755 ./make.sh
./make.sh
# prerequisite for next step, i.e. running preprocessing using data.py, is to
# follow steps in utils/bag_to_kitti if using didi data
python data.py # for process raw data to input network input format
python train.py # training the network.
- How to extract and sync data from ROS bags Under utils/bag_to_kitti
- How to generate tracklet files Under src/tracklets/
- Not related to this repo, but if you are using Amazon CarND AWS AMI (Ubuntu 16.04 and with tensorflow-gpu 0.12 installed), pip install --upgrade tensorflow won't work and will introduce driver/software conflict. Because CarND AMI has a nvidia 367 driver, but after running above line, it will install 375 driver. I think in this case, tensorflow-gpu (version >1.0) need to compiled from source code.
- If you already have a Tensorflow-GPU > 1, then the above
./make.sh
works. - If you see error message "tensorflow.python.framework.errors_impl.NotFoundError: YOUR_FOLDER/roi_pooling.so: undefined symbol: ZN10tensorflow7strings6StrCatB5cxx11ERKNS0_8AlphaNumES3", it is related to compilation of roi_pooling layer. A simple fix will be changing "GLIBCXX_USE_CXX11_ABI=1" to "GLIBCXX_USE_CXX11_ABI=0" in "src/net/lib/make.sh" (line 17)