cityscapes/
gtFine/
train/
aachen/
*_color.png, *_instanceIds.png, *_labelIds.png, *_polygons.json,
*_labelTrainIds.png
...
val/
test/
cityscapes_panoptic_train_trainId.json
cityscapes_panoptic_train_trainId/
*_panoptic.png
cityscapes_panoptic_val.json
cityscapes_panoptic_val/
*_panoptic.png
leftImg8bit/
train/
val/
test/
Install cityscapes scripts by:
pip install git+https://github.com/mcordts/cityscapesScripts.git
Note:
- We train model with train_id (continuous class label from 0 to 18) and evaluate model with original class label.
- labelTrainIds.png are created by
python cityscapesscripts/preparation/createTrainIdLabelImgs.py
. - panoptic.png are created by
python cityscapesscripts/preparation/createPanopticImgs.py --use-train-id
for generating training labels.python cityscapesscripts/preparation/createPanopticImgs.py
for generating evaluation labels.
coco/
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
panoptic_{train,val}2017_trainId.json
panoptic_{train,val}2017/ # png annotations
{train,val}2017/
# image files that are mentioned in the corresponding json
Install panopticapi by:
pip install git+https://github.com/cocodataset/panopticapi.git
Note:
- panoptic_{train,val}2017_trainId.json are created by
python prepare_coco_panoptic_trainid.py
.