This repository has been archived by the owner on Sep 7, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfft_tree_indep_inference_test.py
65 lines (48 loc) · 2.09 KB
/
fft_tree_indep_inference_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for FFT Tree inference for k-cardinality potentials."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import test_util
import fft_tree_indep_inference as ffttii
class FFTTreeIndepTest(test_util.TensorFlowTestCase):
def test_inference(self):
with self.test_session() as session:
tf.set_random_seed(12)
ns = 10000
rep = 1
w = 8
k = 6
all_ys = tf.log(tf.reshape(tf.to_float(tf.range(0, w, 1)), [1, w]))
all_ys = tf.tile(all_ys, [rep, 1])
z_pots = tf.log(
tf.reshape(
tf.to_float(tf.equal(tf.range(0, w + 1, 1), k)), [1, w + 1]))
z_pots = tf.tile(z_pots, [rep, 1])
marg_t, samples_t, logz_t = ffttii.fft_tree_indep_vars(all_ys, z_pots, ns,
rep, w)
grad_log_z = tf.gradients(logz_t, all_ys)
marg, samples, _, glogz = session.run(
[marg_t, samples_t, logz_t, grad_log_z])
emp_marg = np.average(samples, axis=1)
# sampled marginals should be pretty close to marginals calculated from BP
self.assertNDArrayNear(marg, emp_marg, 0.01)
# gradient of logz should be _very_ close to marginals calculated from BP
self.assertNDArrayNear(marg, glogz, 0.001)
if __name__ == '__main__':
tf.test.main()