-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlapper.nim
363 lines (307 loc) · 12.6 KB
/
lapper.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
## This module provides a simple data-structure for fast interval searches. It does not use an interval tree,
## instead, it operates on the assumption that most intervals are of similar length; or, more exactly, that the
## longest interval in the set is not long compared to the average distance between intervals. On any dataset
## where that is not the case, this method will not perform well. For cases where this holds true (as it often
## does with genomic data), we can sort by start and use binary search on the starts, accounting for the length
## of the longest interval. The advantage of this approach is simplicity of implementation and speed. In realistic
## tests queries returning the overlapping intervals are 1000 times faster than brute force and queries that merely
## check for the overlaps are > 5000 times faster.
##
## The main methods are `find` and `seek` where the latter uses a cursor and is very fast for cases when the queries
## are sorted. This is another innovation in this library that allows an addition ~50% speed improvement when
## consecutive queries are known to be in sort order.
##
## For both find and seek, if the given intervals parameter is nil, the function will return a boolean indicating if
## any intervals in the set overlap the query. This is much faster than modifying the
## intervals.
##
## The example below shows off most of the API of `Lapper`.
##
## .. code-block:: nim
## import lapper
## type myinterval = ref object
## start: int
## stop: int
## val: int
##
## proc start(m: myinterval): int {.inline.} = return m.start
## proc stop(m: myinterval): int {.inline.} = return m.stop
## proc `$`(m:myinterval): string = return "(start:$#, stop:$#, val:$#)" % [$m.start, $m.stop, $m.val]
##
## create some fake data
## .. code-block:: nim
## var ivs = new_seq[myinterval]()
## for i in countup(0, 100, 10):
## ivs.add(myinterval(start:i, stop:i + 15, val:0))
## make the Lapper "data-structure"
## .. code-block:: nim
## l = lapify(ivs)
## empty:seq[myinterval]
## .. code-block:: nim
## l.find(10, 20, empty)
## notfound = not l.find(200, 300, empty)
## assert notfound
## .. code-block:: nim
## res = new_seq[myinterval]()
## find is the more general case, l.seek gives a speed benefit when consecutive queries are in order.
## .. code-block:: nim
## echo l.find(50, 70, res)
## echo res
## # @[(start: 40, stop: 55, val:0), (start: 50, stop: 65, val: 0), (start: 60, stop: 75, val: 0), (start: 70, stop: 85, val: 0)]
## for r in res:
## r.val += 1
## or we can do a function on each overlapping interval
## .. code-block:: nim
## l.each_seek(50, 60, proc(a:myinterval) = inc(a.val))
## or
## .. code-block:: nim
## l.each_find(50, 60, proc(a:myinterval) = a.val += 10)
## .. code-block:: nim
## discard l.seek(50, 70, res)
## echo res
## # @[(start:40, stop:55, val:12), (start:50, stop:65, val:12), (start:60, stop:75, val:1)]
import algorithm
type
Interval* = concept i
## An object/tuple must implement these 2 methods to use this module
start(i) is int
stop(i) is int
Lapper*[T] = object
## Lapper enables fast interval searches
intervals: seq[T]
max_len*: int
cursor: int ## `cursor` is used internally by ordered find
template overlap*[T:Interval](a: T, start:int, stop:int): bool =
## overlap returns true if half-open intervals overlap
#return a.start < stop and a.stop > start
a.stop > start and a.start < stop
proc iv_cmp[T:Interval](a, b: T): int =
if a.start < b.start: return -1
if b.start < a.start: return 1
return cmp(a.stop, b.stop)
proc lapify*[T:Interval](ivs:var seq[T]): Lapper[T] =
## create a new Lapper object; ivs will be sorted.
sort(ivs, iv_cmp)
result = Lapper[T](max_len: 0, intervals:ivs)
for iv in ivs:
if iv.stop - iv.start > result.max_len:
result.max_len = iv.stop - iv.start
proc lowerBound[T:Interval](a: var seq[T], start: int): int =
result = a.low
var count = a.high - a.low + 1
var step, pos: int
while count != 0:
step = count div 2
pos = result + step
if a[pos].start < start:
result = pos + 1
count -= step + 1
else:
count = step
proc len*[T:Interval](L:Lapper[T]): int {.inline.} =
## len returns the number of intervals in the Lapper
L.intervals.len
proc empty*[T:Interval](L:Lapper[T]): bool {.inline.} =
return L.intervals.len == 0
iterator find*[T:Interval](L:var Lapper[T], start:int, stop:int): T =
## fill ivs with all intervals in L that overlap start .. stop.
#if ivs.len != 0: ivs.set_len(0)
shallow(L.intervals)
let off = lowerBound(L.intervals, start - L.max_len)
for i in off..L.intervals.high:
let x = L.intervals[i]
if likely(x.overlap(start, stop)):
yield x
elif x.start >= stop: break
proc find*[T:Interval](L:var Lapper[T], start:int, stop:int, ivs:var seq[T]): bool =
## fill ivs with all intervals in L that overlap start .. stop.
#if ivs.len != 0: ivs.set_len(0)
shallow(L.intervals)
let off = lowerBound(L.intervals, start - L.max_len)
var n = 0
for i in off..L.intervals.high:
let x = L.intervals[i]
if x.overlap(start, stop):
if n < ivs.len:
ivs[n] = x
else:
ivs.add(x)
n += 1
elif x.start >= stop: break
if ivs.len > n:
ivs.setLen(n)
return len(ivs) > 0
proc count*[T:Interval](L:var Lapper[T], start:int, stop:int): int =
## fill ivs with all intervals in L that overlap start .. stop.
shallow(L.intervals)
let off = lowerBound(L.intervals, start - L.max_len)
for i in off..L.intervals.high:
let x = L.intervals[i]
if x.overlap(start, stop):
result.inc
elif x.start >= stop: break
proc each_find*[T:Interval](L:var Lapper[T], start:int, stop:int, fn: proc (v:T)) =
## call fn(x) for each interval x in L that overlaps start..stop
let off = lowerBound(L.intervals, start - L.max_len)
for i in off..L.intervals.high:
let x = L.intervals[i]
if x.overlap(start, stop):
fn(x)
elif x.start >= stop: break
iterator seek*[T:Interval](L:var Lapper[T], start:int, stop:int): T =
if L.cursor == 0 or L.intervals[L.cursor].start > start:
L.cursor = lowerBound(L.intervals, start - L.max_len)
while (L.cursor + 1) < L.intervals.high and L.intervals[L.cursor + 1].start < (start - L.max_len):
L.cursor += 1
let old_cursor = L.cursor
for i in L.cursor..L.intervals.high:
let x = L.intervals[i]
if x.overlap(start, stop):
yield x
elif x.start >= stop: break
L.cursor = old_cursor
proc seek*[T:Interval](L:var Lapper[T], start:int, stop:int, ivs:var seq[T]): bool =
## fill ivs with all intervals in L that overlap start .. stop inclusive.
## this method will work when queries to this lapper are in sorted (start) order
## it uses a linear search from the last query instead of a binary search.
## if ivs is nil, then this will just return true if it finds an interval and false otherwise
if ivs.len != 0: ivs.set_len(0)
if L.cursor == 0 or L.intervals[L.cursor].start > start:
L.cursor = lowerBound(L.intervals, start - L.max_len)
let old_cursor = L.cursor
while (L.cursor + 1) < L.intervals.high and L.intervals[L.cursor + 1].start < (start - L.max_len):
L.cursor += 1
for i in L.cursor..L.intervals.high:
let x = L.intervals[i]
if x.overlap(start, stop):
ivs.add(x)
elif x.start >= stop: break
L.cursor = old_cursor
return ivs.len != 0
proc each_seek*[T:Interval](L:var Lapper[T], start:int, stop:int, fn:proc (v:T)) {.inline.} =
## call fn(x) for each interval x in L that overlaps start..stop
## this assumes that subsequent calls to this function will be in sorted order
if L.cursor == 0 or L.cursor >= L.intervals.high or L.intervals[L.cursor].start > start:
L.cursor = lowerBound(L.intervals, start - L.max_len)
while (L.cursor + 1) < L.intervals.high and L.intervals[L.cursor + 1].start < (start - L.max_len):
L.cursor += 1
let old_cursor = L.cursor
for i in L.cursor..L.intervals.high:
let x = L.intervals[i]
if x.start >= stop: break
elif x.stop > start:
fn(x)
L.cursor = old_cursor
iterator items*[T:Interval](L: Lapper[T]): T =
for i in L.intervals: yield i
when isMainModule:
import random
import times
import strutils
proc randomi(imin:int, imax:int): int =
return imin + rand(imax - imin)
proc brute_force(ivs: seq[Interval], start:int, stop:int, res: var seq[Interval]) =
if res.len != 0: res.set_len(0)
for i in ivs:
if i.overlap(start, stop): res.add(i)
# example implementation
type myinterval = tuple[start:int, stop:int, val:int]
proc start(m: myinterval): int {.inline.} = return m.start
proc stop(m: myinterval): int {.inline.} = return m.stop
proc make_random(n:int, range_max:int, size_min:int, size_max:int): seq[myinterval] =
result = new_seq[myinterval](n)
for i in 0..<n:
var s = randomi(0, range_max)
var e = s + randomi(size_min, size_max)
var m:myinterval = (s, e, 0)
result[i] = m
var
N = 100000
ntimes = 40
brute_step = 10
var intervals = make_random(N, 50000000, 500, 20000)
echo "running tests and comparisons on $# random intervals" % [$N]
var icopy = intervals
var t = cpuTime()
var res = new_seq[myinterval]()
for i in countup(0, intervals.len - brute_step, brute_step):
var iv = intervals[i]
brute_force(intervals, iv.start, iv.stop, res)
var brute_time = cpuTime() - t
echo "time for brute force search on 1/$#th of the data:" % [$brute_step], brute_time
t = cpuTime()
var lap = lapify(intervals)
echo "time to create Lapper:", cpuTime() - t
t = cpuTime()
for k in 0..<ntimes:
for iv in icopy:
discard lap.find(iv.start, iv.stop, res)
if len(res) == 0:
echo "0 bad!!!"
var lap_time = cpuTime() - t
echo "time to do $# searches ($# reps) in Lapper:" % [$(N * ntimes), $ntimes], lap_time, " speedup:", (brute_time * float64(brute_step)) / (lap_time / float64(ntimes))
t = cpuTime()
for k in 0..<ntimes:
for iv in intervals:
discard lap.seek(iv.start, iv.stop, res)
if len(res) == 0:
echo "1 bad!!!"
lap_time = cpuTime() - t
echo "time to do $# seek-searches ($# reps) in Lapper:" % [$(N * ntimes), $ntimes], lap_time, " speedup:", (brute_time * float64(brute_step)) / (lap_time / float64(ntimes))
var iempty: seq[myinterval]
t = cpuTime()
for k in 0..<ntimes:
for iv in icopy:
if 0 == lap.count(iv.start, iv.stop):
echo "2 bad!!!"
lap_time = cpuTime() - t
echo "time to do $# presence tests ($# reps) in Lapper:" % [$(N * ntimes), $ntimes], lap_time, " speedup:", (brute_time * float64(brute_step)) / (lap_time / float64(ntimes))
t = cpuTime()
for k in 0..<ntimes:
for iv in intervals:
if not lap.seek(iv.start, iv.stop, iempty):
echo "3 bad!!!"
lap_time = cpuTime() - t
echo "time to do $# seek-presence tests ($# reps) in Lapper:" % [$(N * ntimes), $ntimes], lap_time, " speedup:", (brute_time * float64(brute_step)) / (lap_time / float64(ntimes))
t = cpuTime()
for k in 0..<ntimes:
for iv in intervals:
var n = 0
lap.each_seek(iv.start, iv.stop, (proc(f:myinterval) = (if iv.start == f.start: n.inc)))
if n == 0:
echo "4 bad!!!"
lap_time = cpuTime() - t
echo "time to do $# each-seek-presence tests ($# reps) in Lapper:" % [$(N * ntimes), $ntimes], lap_time, " speedup:", (brute_time * float64(brute_step)) / (lap_time / float64(ntimes))
var brute_res = new_seq[myinterval]()
var error = 0
t = cpuTime()
var res2 = new_seq[myinterval](10)
var res3 = new_seq_of_cap[myinterval](10)
var res4 = new_seq_of_cap[myinterval](10)
proc do_each_find(m:myinterval) = res3.add(m)
proc do_each_seek(m:myinterval) = res4.add(m)
icopy.sort(iv_cmp)
for iv in icopy:
brute_force(icopy, iv.start, iv.stop, brute_res)
discard lap.find(iv.start, iv.stop, res)
discard lap.seek(iv.start, iv.stop, res2)
res3.set_len(0)
lap.each_find(iv.start, iv.stop, do_each_find)
res4.set_len(0)
lap.each_seek(iv.start, iv.stop, do_each_seek)
if not lap.seek(iv.start, iv.stop, iempty):
echo "4 bad!! should have found it"
sort(brute_res, iv_cmp)
sort(res, iv_cmp)
sort(res2, iv_cmp)
sort(res3, iv_cmp)
sort(res4, iv_cmp)
for i, b in brute_res:
if b.start != res[i].start or b.start != res2[i].start or b.start != res3[i].start or b.start != res4[i].start:
echo "5 bad!!! ", len(res), " ", len(res2)
error = 1
if b.stop != res[i].stop or b.stop != res2[i].stop or res3[i].stop != b.stop or res4[i].stop != b.stop:
echo "6 bad!!! ", len(res), " ", len(res2)
error = 1
echo "time to check each result:", cpuTime() - t
quit(error)