-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlsmdc_dataloader.py
executable file
·165 lines (141 loc) · 5.27 KB
/
lsmdc_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch as th
from torch.utils.data import Dataset
import pickle
import torch.nn.functional as F
import numpy as np
import re
from torch.utils.data.dataloader import default_collate
class LSMDC_DataLoader(Dataset):
"""LSMDC dataset loader."""
def __init__(
self,
data_path,
we,
we_dim=300,
max_words=30,
num_frames_multiplier=5,
tri_modal=False,
):
"""
Args:
"""
self.data = pickle.load(open(data_path, 'rb'))
self.we = we
self.we_dim = we_dim
self.max_words = max_words
self.max_video = 30
self.num_frames_multiplier = num_frames_multiplier
self.tri_modal = tri_modal
def __len__(self):
return len(self.data)
def custom_collate(self, batch):
return default_collate(batch)
def _zero_pad_tensor(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = np.zeros((size - len(tensor), self.we_dim), dtype=np.float32)
return np.concatenate((tensor, zero), axis=0)
def _tokenize_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_we(self, words):
words = [word for word in words if word in self.we.vocab]
if words:
we = self._zero_pad_tensor(self.we[words], self.max_words)
return th.from_numpy(we)
else:
return th.zeros(self.max_words, self.we_dim)
def __getitem__(self, idx):
video_id = self.data[idx]['id']
# load 2d and 3d features (features are pooled over the time dimension)
feat_2d = F.normalize(self.data[idx]['2d_pooled'].float(), dim=0)
feat_3d = F.normalize(self.data[idx]['3d_pooled'].float(), dim=0)
video = th.cat((feat_2d, feat_3d))
# load audio and zero pad/truncate if necessary
audio = self.data[idx]['audio']
target_length = 1024 * self.num_frames_multiplier
nframes = audio.numpy().shape[1]
p = target_length - nframes
if p > 0:
audio = np.pad(audio, ((0,0),(0,p)), 'constant', constant_values=(0,0))
elif p < 0:
audio = audio[:,0:p]
audio = th.FloatTensor(audio)
# choose a caption
caption = ''
if self.tri_modal:
caption = self._words_to_we(self._tokenize_text(self.data[idx]['caption']))
return {'video': video, 'text': caption, 'video_id': video_id,
'audio': audio, 'nframes': nframes}
class LSMDC_DataLoader_label(Dataset):
"""LSMDC dataset loader."""
def __init__(
self,
data_path,
we,
pseudo_v,
pseudo_a,
we_dim=300,
max_words=30,
num_frames_multiplier=5,
tri_modal=False,
):
"""
Args:
"""
self.data = pickle.load(open(data_path, 'rb'))
self.we = we
self.we_dim = we_dim
self.max_words = max_words
self.max_video = 30
self.num_frames_multiplier = num_frames_multiplier
self.tri_modal = tri_modal
self.pseudo_v = pseudo_v
self.pseudo_a = pseudo_a
def __len__(self):
return len(self.data)
def custom_collate(self, batch):
return default_collate(batch)
def _zero_pad_tensor(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = np.zeros((size - len(tensor), self.we_dim), dtype=np.float32)
return np.concatenate((tensor, zero), axis=0)
def _tokenize_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_we(self, words):
words = [word for word in words if word in self.we.vocab]
if words:
we = self._zero_pad_tensor(self.we[words], self.max_words)
return th.from_numpy(we)
else:
return th.zeros(self.max_words, self.we_dim)
def __getitem__(self, idx):
video_id = self.data[idx]['id']
# load 2d and 3d features (features are pooled over the time dimension)
feat_2d = F.normalize(self.data[idx]['2d_pooled'].float(), dim=0)
feat_3d = F.normalize(self.data[idx]['3d_pooled'].float(), dim=0)
video = th.cat((feat_2d, feat_3d))
# load audio and zero pad/truncate if necessary
audio = self.data[idx]['audio']
target_length = 1024 * self.num_frames_multiplier
nframes = audio.numpy().shape[1]
p = target_length - nframes
if p > 0:
audio = np.pad(audio, ((0, 0), (0, p)), 'constant', constant_values=(0, 0))
elif p < 0:
audio = audio[:, 0:p]
audio = th.FloatTensor(audio)
# choose a caption
caption = ''
if self.tri_modal:
caption = self._words_to_we(self._tokenize_text(self.data[idx]['caption']))
return {'video': video, 'text': caption, 'video_id': self.data[idx]['id'],
'audio': audio, 'nframes': nframes, 'pseudo_v': self.pseudo_v[idx], 'pseudo_a': self.pseudo_a[idx]}