-
Notifications
You must be signed in to change notification settings - Fork 5
/
ball_tracking.py
122 lines (106 loc) · 3.71 KB
/
ball_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# USAGE
# python ball_tracking.py --video ball_tracking_example.mp4
# python ball_tracking.py
# must run sudo modprobe bcm2835-v4l2
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
import math
import time
import nerf_turret
# CV2 code taken from https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
# "Ball Tracking with OpenCV" by Adrian Rosebrock, 9/14/2015
ap = argparse.ArgumentParser()
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
camera = cv2.VideoCapture(0)
time_per_frame = 1 / 20
lastUpdate = time.time()
last_ball_time = 0
while True:
if time.time() - lastUpdate < time_per_frame:
time.sleep(time_per_frame / 5)
continue
lastUpdate = time.time()
(grabbed, frame) = camera.read()
frame = imutils.resize(frame, width=600)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
if len(cnts) > 0 and radius >= 10:
last_ball_time = time.time()
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
dx, dy = 300-center[0], center[1]-230
vx, vy = 50 * dx // 300, 50 * dy // 300
print(dx, dy)
distance = math.sqrt(dx**2 + dy**2)
if distance < 5:
nerf_turret.set_velocity(0, 0)
else:
nerf_turret.set_velocity(vx, vy)
print('>>>', distance)
#continue
if distance > 50:
nerf_turret.rev(0)
elif distance > 40:
nerf_turret.rev(50)
elif distance > 30:
nerf_turret.rev(100)
elif distance > 20:
nerf_turret.rev(150)
else:
nerf_turret.rev(150)
nerf_turret.fire(1)
# # only proceed if the radius meets a minimum size
# if radius > 10:
# # draw the circle and centroid on the frame,
# # then update the list of tracked points
# cv2.circle(frame, (int(x), int(y)), int(radius),
# (0, 255, 255), 2)
# cv2.circle(frame, center, 5, (0, 0, 255), -1)
else:
nerf_turret.rev(0)
if time.time() - last_ball_time > 10:
nerf_turret.patrol()
else:
nerf_turret.set_velocity(0, 0)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
# cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
# cv2.destroyAllWindows()