-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain-pipeline.sh
executable file
·83 lines (71 loc) · 3.13 KB
/
train-pipeline.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/bin/bash
##############################################
# Training Machine Learning Classifiers to Predict Cell Health Outcomes
#
# Gregory Way, 2020
##############################################
# Step 0: Convert all notebooks to scripts
jupyter nbconvert --to=script \
--FilesWriter.build_directory=scripts/nbconverted \
*.ipynb
# Step 1: Stratify data into training and testing sets
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=python3 \
--ExecutePreprocessor.timeout=10000000 \
--execute 0.stratify-data.ipynb
# Step 2: Train all the machine learning models (classification and regression)
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=python3 \
--ExecutePreprocessor.timeout=10000000 \
--execute 1.train-models.ipynb
# Step 3: Visualize distribution of features
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 2.visualize-binary-distribution.ipynb
# Step 4A: Visualize Performance (Classification)
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 3.visualize-classification-performance.ipynb
# Step 4B: Visualize Performance (Regression)
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 4.visualize-regression-performance.ipynb
# Step 5: Summarize model performance
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 5.visualize-performance-summary.ipynb
# Step 6: Apply models to full dataset
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=python3 \
--ExecutePreprocessor.timeout=10000000 \
--execute 6.apply-models.ipynb
# Step 7: Visualize cell line specific performance
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 7.visualize-cell-line-performance.ipynb
# Step 8: Visualize model coefficients
jupyter nbconvert --to=html \
--FilesWriter.build_directory=scripts/html \
--ExecutePreprocessor.kernel_name=ir \
--ExecutePreprocessor.timeout=10000000 \
--execute 8.visualize-coefficients.ipynb
# Step 9: Visualize example cells
# Note: This step requires the raw image data!
# jupyter nbconvert --to=html \
# --FilesWriter.build_directory=scripts/html \
# --ExecutePreprocessor.kernel_name=ir \
# --ExecutePreprocessor.timeout=10000000 \
# --execute 8.visualize-coefficients.ipynb