forked from marian-nmt/marian-dev
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsentencepiece_vocab.cpp
348 lines (283 loc) · 12 KB
/
sentencepiece_vocab.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#include "sentencepiece_vocab.h"
#include "data/vocab_base.h"
#include "common/config.h"
#include "common/options.h"
#include "common/logging.h"
#include "common/filesystem.h"
#include "common/regex.h"
#include <sstream>
#include <random>
namespace marian {
#ifdef USE_SENTENCEPIECE
// Wrapper around https://github.com/google/sentencepiece
class SentencePieceVocab : public IVocab {
private:
// Actual SentencePiece processor object
UPtr<sentencepiece::SentencePieceProcessor> spm_;
// Sampling factor for subword regularization, disabled when 0
float alpha_{0};
// Allowed suffixes for SentencePiece model
std::vector<std::string> suffixes_ = {".spm"};
Ptr<Options> options_;
size_t batchIndex_{0};
std::mt19937 generator_;
std::uniform_int_distribution<int> randInt_; // from 0 to INT_MAX
// Keeps sentences segmented into subword units
bool keepEncoded_{false};
// Sample from one file, based on first algorithm from:
// https://en.wikipedia.org/wiki/Reservoir_sampling
void reservoirSampling(std::vector<std::string>& sample, size_t& seenLines,
const std::string& trainPath, size_t maxLines, size_t maxBytes) {
ABORT_IF(maxLines == 0, "Sample needs to be larger 0");
std::unique_ptr<std::istream> trainStrm(trainPath == "stdin"
? new std::istream(std::cin.rdbuf())
: new io::InputFileStream(trainPath));
std::string line;
while(getline(*trainStrm, line)) {
if(line.size() > 0 && line.size() < maxBytes) {
if(sample.size() < maxLines) {
sample.push_back(line);
}
else {
size_t i = randInt_(generator_) % (seenLines + 1);
if(i < maxLines)
sample[i] = line;
}
seenLines++;
}
}
}
// Iterate over all input files and collect a representative sample via reservoir sampling.
// The sample will first grow to the desired size and next keep sampling with decreasing
// probability in the hope to get a uniform sample from the union of all files.
size_t reservoirSamplingAll(io::TemporaryFile& temp,
const std::vector<std::string>& trainPaths,
size_t maxLines, size_t maxBytes) {
LOG(info, "[SentencePiece] Sampling at most {} lines from {}", maxLines, utils::join(trainPaths, ", "));
std::vector<std::string> sample;
size_t seenLines = 0;
for(const auto& trainPath : trainPaths)
reservoirSampling(sample, seenLines, trainPath, maxLines, maxBytes);
std::shuffle(sample.begin(), sample.end(), generator_);
for(const auto& line : sample)
temp << line << std::endl;
LOG(info, "[SentencePiece] Selected {} lines", sample.size());
return sample.size();
}
// Just concatenate all files to a temporary file so SentencePiece can consume it.
size_t dumpAll(io::TemporaryFile& temp,
const std::vector<std::string>& trainPaths,
size_t maxBytes) {
LOG(info, "[SentencePiece] Selecting all lines from {}", utils::join(trainPaths, ", "));
size_t seenLines = 0;
std::string line;
for(const auto& trainPath : trainPaths) {
io::InputFileStream in(trainPath);
while(getline(in, line)) {
if(line.size() > 0 && line.size() < maxBytes) {
temp << line << std::endl;
seenLines++;
}
}
}
LOG(info, "[SentencePiece] Selected {} lines", seenLines);
return seenLines;
}
public:
SentencePieceVocab(Ptr<Options> options, size_t batchIndex)
: options_(options),
batchIndex_(batchIndex),
generator_((uint32_t)Config::seed),
keepEncoded_(options->get<bool>("no-spm-decode", false)) {
if(options_->has("sentencepiece-alphas")) {
auto alphas = options_->get<std::vector<float>>("sentencepiece-alphas");
if(alphas.size() <= batchIndex)
alpha_ = 0.f;
else
alpha_ = alphas[batchIndex_];
if(alpha_ > 0)
LOG(debug,
"Setting SentencePiece vocabulary sampling factor to {} for input {}",
alpha_,
batchIndex_);
}
}
virtual const std::string& canonicalExtension() const override { return suffixes_[0]; }
virtual const std::vector<std::string>& suffixes() const override { return suffixes_; }
virtual std::string suffix() { return suffixes_[0]; };
virtual std::string type() const override { return "SentencePieceVocab"; }
virtual Word getEosId() const override { return Word::fromWordIndex(spm_->eos_id()); }
virtual Word getUnkId() const override { return Word::fromWordIndex(spm_->unk_id()); }
void create(const std::string& vocabPath,
const std::vector<std::string>& trainPaths,
size_t maxSize) override {
size_t defaultMaxSize = 32000;
size_t maxLines = options_->get<size_t>("sentencepiece-max-lines");
size_t maxBytes = 2048;
LOG(info, "[SentencePiece] Training SentencePiece vocabulary {}", vocabPath);
if(maxSize == 0) {
LOG(info, "[SentencePiece] Vocabulary size is undefined (set with --dim-vocabs ...) - setting to {}", defaultMaxSize);
maxSize = defaultMaxSize;
}
// Create temporary file to hold the sample for the SentencePiece trainer
io::TemporaryFile temp(options_->get<std::string>("tempdir"), false);
std::string tempFileName = temp.getFileName();
LOG(info, "[SentencePiece] Creating temporary file {}", tempFileName);
size_t seenLines = 0;
if(maxLines == 0)
seenLines = dumpAll(temp, trainPaths, maxBytes);
else
seenLines = reservoirSamplingAll(temp, trainPaths, maxLines, maxBytes);
// Compose the SentencePiece training command from filenames and parameters0
std::stringstream command;
command
<< " --bos_id=-1 --eos_id=0 --unk_id=1" // these should not be changed as they match Marian defaults
<< " --input=" << tempFileName
<< " --model_prefix=" << vocabPath
<< " --vocab_size=" << maxSize
<< " --max_sentence_length=" << maxBytes
<< " --input_sentence_size=" << seenLines
<< " " << options_->get<std::string>("sentencepiece-options"); // these are SentencePiece command line options
// Train the SentencePiece model
const auto status = sentencepiece::SentencePieceTrainer::Train(command.str());
ABORT_IF(!status.ok(),
"SentencePiece vocabulary error: {}",
status.ToString());
LOG(info, "[SentencePiece] Removing {}", vocabPath + ".vocab");
ABORT_IF(remove((vocabPath + ".vocab").c_str()) != 0,
"Could not remove {}",
vocabPath + ".vocab");
LOG(info, "[SentencePiece] Renaming {} to {}", vocabPath + ".model", vocabPath);
ABORT_IF(rename((vocabPath + ".model").c_str(), vocabPath.c_str()) != 0,
"Could not rename {} to {}",
vocabPath + ".model", vocabPath);
}
void createFake() override {
ABORT("[SentencePiece] Fake SentencePiece vocabulary not supported");
}
Word operator[](const std::string& token) const override {
return Word::fromWordIndex(spm_->PieceToId(token));
}
const std::string& operator[](Word id) const override {
ABORT_IF(id.toWordIndex() >= size(), "Unknown word id: ", id.toWordIndex());
return spm_->IdToPiece(id.toWordIndex());
}
Words encode(const std::string& line, bool addEOS, bool inference) const override {
std::vector<int> spmIds;
if(inference || alpha_ == 0)
spm_->Encode(line, &spmIds);
else
spm_->SampleEncode(line, -1, alpha_, &spmIds);
Words words; words.reserve(spmIds.size() + addEOS);
for (auto&& spmId : spmIds)
words.push_back(Word::fromWordIndex(spmId));
if(addEOS)
words.push_back(getEosId());
return words;
}
Words encodeWithByteRanges(const string_view& line,
std::vector<string_view> &byteRanges,
bool addEOS, bool inference) const override {
sentencepiece::SentencePieceText spt;
spm_->Encode(line, &spt);
Words words;
words.reserve(spt.pieces().size() + addEOS);
for(auto piece : spt.pieces()) {
Word word = Word::fromWordIndex(piece.id());
words.push_back(word);
string_view byteRange = line.substr(piece.begin(), piece.end() - piece.begin());
byteRanges.push_back(byteRange);
}
if (addEOS){
words.push_back(getEosId());
}
return words;
}
std::string decode(const Words& sentence, bool /*ignoreEOS*/) const override {
std::string line;
if(keepEncoded_) { // i.e. keep the sentence segmented into subword units
for(const Word& id : sentence)
line += (*this)[id] + " ";
line.pop_back(); // trim the trailing whitespace
} else {
// convert vector of Word to vector of int
std::vector<int> spmSentence;
spmSentence.reserve(sentence.size());
for(auto&& word : sentence)
spmSentence.push_back(word.toWordIndex());
spm_->Decode(spmSentence, &line);
}
return line;
}
void decodeWithByteRanges(const Words& sentence,
std::string &decoded,
std::vector<string_view> &byteRanges,
bool ignoreEOS) const override {
sentencepiece::SentencePieceText spt;
std::vector<int> spmSentence;
spmSentence.reserve(sentence.size());
for(auto&& word : sentence)
spmSentence.push_back(word.toWordIndex());
spm_->Decode(spmSentence, &spt);
decoded = spt.text(); // Creates copy of string.
string_view decoded_view(decoded);
for(auto piece : spt.pieces()) {
string_view byteRange = decoded_view.substr(piece.begin(), piece.end() - piece.begin());
byteRanges.push_back(byteRange);
}
if(ignoreEOS){
byteRanges.pop_back();
}
}
std::string surfaceForm(const Words& sentence) const override {
// with SentencePiece, decoded form and surface form are identical
return decode(sentence, /*ignoreEOS=*/true);
}
size_t size() const override {
return spm_->GetPieceSize();
}
size_t load(const std::string& vocabPath, size_t /*maxSize*/) override {
LOG(info, "[data] Loading SentencePiece vocabulary from file {}", vocabPath);
ABORT_IF(!filesystem::exists(vocabPath),
"SentencePiece vocabulary file {} does not exist",
vocabPath);
spm_.reset(new sentencepiece::SentencePieceProcessor());
const auto status = spm_->Load(vocabPath);
ABORT_IF(!status.ok(),
"SentencePiece vocabulary error: {}",
status.ToString());
return spm_->GetPieceSize();
}
// loadFromSerialized() is based on `absl::string_view` which does *not* own the
// memory to which it points. So be sure that the underlying memory is alive during
// loading (and no copy will be generated)
size_t loadFromSerialized(const string_view& serialized) override {
LOG(info, "[data] Loading SentencePiece vocabulary from buffer");
spm_.reset(new sentencepiece::SentencePieceProcessor());
const auto status = spm_->LoadFromSerializedProto(serialized);
ABORT_IF(!status.ok(),
"SentencePiece vocabulary error: {}",
status.ToString());
return spm_->GetPieceSize();
}
std::string toUpper(const std::string& line) const override { return utils::utf8ToUpper(line); }
std::string toEnglishTitleCase(const std::string& line) const override { return utils::toEnglishTitleCase(line); }
};
#endif // USE_SENTENCEPIECE
Ptr<IVocab> createSentencePieceVocab(const std::string& vocabPath, Ptr<Options> options, size_t batchIndex) {
bool isSentencePiece = regex::regex_search(vocabPath, regex::regex("\\.(spm)$"));
if(isSentencePiece) {
#ifdef USE_SENTENCEPIECE
return New<SentencePieceVocab>(options, batchIndex);
#else
batchIndex; options;
ABORT("*.spm suffix in path {} reserved for SentencePiece models, "
"but support for SentencePiece is not compiled into Marian. "
"Try to recompile after `cmake .. -DUSE_SENTENCEPIECE=on [...]`",
vocabPath);
#endif
}
// Not a SentencePiece model based on suffix;
return nullptr;
}
}