-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESeq2_module.R
334 lines (284 loc) · 14.8 KB
/
DESeq2_module.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#! R
#' DESeq2 module taking metadata_csv nad raw count data frame to run DE analysis
#'
#' @param count_data object in matrix format (integers) with rownames as genes and colnames as sample IDs
#' @param anno_tb tibble of ensembl_gene_id - external_gene_id mappings for annotation
#' @param tpm_tb tibble of tpms to append to results for output
#' @param tag string used to prefix output
#' @param metadata_csv path to file holding metadata
#' @param metadata_design string of design using colnames of metadata_csv
#' @param control_reference string indicating the 'control' intgroup for last element of design
#' @param output_dir path to where output goes
#' @param ens_version ENSEMBL version to use
#' @param org_prefix organism prefix from ENSEMBL
#' @param delim_samples character to delimit sample IDs (default: ".")
#' @return nz_fc_co raw count object with no lines summing to zeros
#' @importFrom magrittr '%>%'
#' @export
DESeq2_module <- function(count_data, anno_tb = NULL, tpm_tb = NULL, tag = NULL, metadata_csv = NULL, metadata_design = NULL, control_reference = NULL, output_dir = NULL, delim_samples = "\\."){
print("Running: DESeq2_module()")
##warnigns for undefined param
if(is.null(tag)){
stop("Please provide a tag to name your outputs")
}
if(is.null(metadata_csv)){
stop("Please specify a metadata_csv file in CSV format")
}
if(is.null(metadata_design)){
print("Please specify a metadata_design for DESeq2")
print("NB this should be format: first + second + ... + last")
print("NBB that 'last' in design is condition of interest in DE analysis")
stop("NBBB that all elements of the design must be names of columns in 'metadata' file")
}
# if(is.null(control_reference)){
# print("Please specify a control_reference from a column in metadata_csv for DESeq2")
# stop("NB that this should be one of the 'intgroup' levels")
# }
if(is.null(output_dir)){
print("No directory specified for output, the current dir will be used")
output_dir <- "./DEseq2"
} else {
output_dir <- paste0(output_dir, "/DEseq2")
dir.create(output_dir, recursive = TRUE, showWarnings = FALSE)
}
##read in condition data
cond <- readr::read_csv(metadata_csv)
cond_df <- as.data.frame(cond)
rownames(cond_df) <- cond_df[,1]
##overlap w/count_data and sort
cond_df <- cond_df[rownames(cond_df) %in% colnames(count_data),]
cond_df <- cond_df[sort(rownames(cond_df)),]
##break design into components
design_vec <- unlist(lapply(metadata_design, function(f){gsub(" ", "", strsplit(f, "\\+")[[1]])}))
##take only cols of interest and define major condition
cond_df <- cond_df[,colnames(cond_df) %in% c("sample", design_vec)]
CONDITION <- rev(design_vec)[1]
##create factors
for(x in 1:length(colnames(cond_df))){
cond_df[,x] <- factor(cond_df[,x])
}
##change reference level if specified
if(!is.null(control_reference)){
cond_df[,CONDITION] <- relevel(cond_df[,CONDITION], ref = control_reference)
}
##DESeq2DataSet object
dds <- DESeq2::DESeqDataSetFromMatrix(countData = count_data,
colData = cond_df,
design = formula(paste0("~ ", metadata_design)))
##run DESeq2, make results
ddseq <- DESeq2::DESeq(dds)
##make all contrasts of CONDITION, then set into named list
combn_mat <- t(combn(levels(cond_df[,CONDITION]),2))
combns <- apply(combn_mat, 1, function(f){paste(f, collapse="-")})
DESeq2_res_list <- lapply(combns, function(f){
ress <- na.omit(DESeq2::results(ddseq, contrast = c(CONDITION, strsplit(f, "-")[[1]])))
ress_tb <- tibble::as_tibble(as.data.frame(ress), rownames="ensembl_gene_id")
if(!is.null(anno_tb)){
if(class(anno_tb)[1] != "tbl_df"){
anno_tb <- tibble::as_tibble(anno_tb)
}
if(any(colnames(anno_tb) %in% "target_id")==TRUE){
anno_tb <- anno_tb %>% dplyr::select(-target_id)
}
ress_tb <- dplyr::left_join(anno_tb, ress_tb) %>%
na.omit() %>%
dplyr::arrange(padj) %>%
tibble::as_tibble() %>%
dplyr::distinct()
}
if(!is.null(tpm_tb)){
num_cols <- unlist(lapply(tpm_tb[1,], is.numeric))
colnames(tpm_tb)[num_cols] <- paste0(colnames(tpm_tb)[num_cols], "_tpm")
ress_tb <- dplyr::left_join(ress_tb, tpm_tb) %>%
na.omit() %>%
dplyr::arrange(padj) %>%
tibble::as_tibble() %>%
dplyr::distinct()
}
readr::write_tsv(ress_tb, paste0(output_dir, "/", tag, ".res.", f, ".DESeq2.tsv"))
return(ress_tb)
})
names(DESeq2_res_list) <- unlist(lapply(combns, function(f){
paste(paste0(CONDITION, strsplit(f, "-")[[1]]), collapse = "-")
}))
saveRDS(DESeq2_res_list, file = paste0(output_dir, "/", tag, ".DESeq2_res_list.rds"))
##plots
vsd <- DESeq2::vst(dds, blind = TRUE)
sampleDists <- dist(t(SummarizedExperiment::assay(vsd)))
sampleDistMatrix <- as.matrix(sampleDists)
colors <- grDevices::colorRampPalette( rev(RColorBrewer::brewer.pal(9, "Blues")) )(256)
hc <- hclust(sampleDists)
pdf(paste0(output_dir, "/", tag, ".heatmap.pdf"))
heatmap(sampleDistMatrix, Rowv=as.dendrogram(hc),
symm=TRUE, col=colors,
margins=c(2,10), labCol=FALSE, cexRow = 0.8 )
dev.off()
##PCA
lapply(design_vec, function(f){
bmpcaplot <- BMplotPCA(vsd, intgroup=c(f), anno_tb = anno_tb, pc_limit = 5)
pdf(paste0(output_dir, "/", tag, ".", f, ".PCA_PC_loadings.pdf"), onefile = TRUE)
lapply(bmpcaplot[[1]], print)
print(bmpcaplot[[2]])
print(bmpcaplot[[3]])
dev.off()
})
}
#' Plotting PCA function
#' @param x variance stabilized DESeq2 object
#' @param intgroup which colname from metadata_csv to be output on plot
#' @param ntop top n genes to use by variance
#' @param anno_tb tibble of ensembl_gene_id - external_gene_id mappings for annotation
#' @param pc_limit integer percent variance accounted by PC for inclusion in plots (default: 10%)
#' @return list of ggplot2 objects for printing (PCA, PCs, loadings)
#' @export
BMplotPCA <- function(x, intgroup = NULL, ntop = 15000, anno_tb, pc_limit = 10) {
rv <- matrixStats::rowVars(SummarizedExperiment::assay(x))
select <- order(rv, decreasing = TRUE)[seq_len(min(ntop,
length(rv)))]
pca <- prcomp(t(SummarizedExperiment::assay(x)[select, ]))
sdPc <- apply(pca$x, 2, sd)
percentVar <- sdPc^2/sum(sdPc^2)
sdRot <- apply(pca$rotation, 2, sd)
percentVarRot <- sdRot^2/sum(sdRot^2)
if (!all(intgroup %in% names(SummarizedExperiment::colData(x)))) {
stop("The argument 'intgroup' should specify columns of colData(xx)")
}
intgroup.df <- as.data.frame(SummarizedExperiment::colData(x)[, intgroup, drop = FALSE])
group <- factor(apply(intgroup.df, 1, paste, collapse = " : "))
pca_plot <- function(d, group, intgroup.df, pcv){
if(nlevels(group)>6){
ggp <- ggplot2::ggplot(data = d,
ggplot2::aes_string(x = "PC1",
y = colnames(d)[2],
group = intgroup)) +
ggplot2::scale_shape_manual(values = 1:dim(unique(intgroup.df))[1]) +
ggplot2::labs(paste0("PCA plot using ", colnames(intgroup.df)), x = paste0("PC1: ", round(pcv[1] * 100), "% variance"),y = paste0(colnames(d)[2], ": ", round(pcv[2] * 100), "% variance")) +
ggrepel::geom_text_repel(label = rownames(d),
colour = "black",
size = 2,
fontface = "bold") +
ggplot2::geom_point(ggplot2::aes_string(shape = intgroup,
colour = intgroup,
fill = intgroup),
size = 3) +
ggplot2::ggtitle(paste0("PCA plot using ", colnames(intgroup.df)),
subtitle = paste0(colnames(d)[1], " vs. ", colnames(d)[2]))
}
if(nlevels(group)<=6){
ggp <- ggplot2::ggplot(data = d, ggplot2::aes_string(x = "PC1",
y = colnames(d)[2],
group = intgroup)) +
# ggplot2::aes(x = PC1, y = PC2, group = group, shape = group, colour = group)) +
ggplot2::geom_point(ggplot2::aes_string(shape = intgroup,
colour = intgroup,
fill = intgroup),
size = 3) +
ggplot2::scale_shape_discrete(solid = T) +
ggplot2::xlab(paste0("PC1: ", round(pcv[1] * 100), "% variance")) +
ggplot2::ylab(paste0(colnames(d)[2], ": ", round(pcv[2] * 100), "% variance")) +
ggrepel::geom_text_repel(label = rownames(d),
colour = "black",
size = 2,
fontface = "bold") +
# ggplot2::annotate("text",x=pca$x[,1], y = pca$x[,2]-0.4, label = colnames(x), cex = 1.6) +
ggplot2::ggtitle(paste0("PCA plot using ", colnames(intgroup.df)),
subtitle = paste0(colnames(d)[1], " vs. ", colnames(d)[2]))
}
return(ggp)
}
##lapply to make all PC > pc_limit included
pcv_u <- percentVar[percentVar > pc_limit/100]
ggps <- lapply(2:length(pcv_u), function(f){
d <- data.frame(PC1 = pca$x[, 1], PC2 = pca$x[, f], intgroup.df, names = colnames(x))
colnames(d)[colnames(d) == "PC2"] <- paste0("PC", f)
ggp <- pca_plot(d, group, intgroup.df, pcv = percentVar[c(1,f)])
return(ggp)
})
##scree plot showing contributions of PCs
pcv <- data.frame(PC = colnames(pca$x), percent_variance = percentVar)
pcv <- pcv[order(pcv$percent_variance, decreasing = TRUE),]
levels(pcv$PC) <- pcv$PC
ggs <- ggplot2::ggplot(data = pcv, ggplot2::aes(x = PC, y = percent_variance )) +
ggplot2::geom_col() +
ggplot2::ggtitle("Proprotion of Variances of Principle Components") +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90))
##loading top 5, bottom 5 from 10 top PCs
top_pc <- pcv[1:10,][!is.na(pcv[1:10, "PC"]),]
top_pc$percent_variance <- paste0(round(top_pc$percent_variance, digits = 3)*100, "%")
pca_rot <- pca$rotation[,top_pc$PC]
fives_list <- lapply(colnames(pca_rot), function(f){
fc <- c(tail(sort(pca_rot[,f]),5), head(sort(pca_rot[,f]),5))
nfc <- dplyr::filter(.data = anno_tb, ensembl_gene_id %in% names(fc))
names(fc) <- unlist(lapply(names(fc), function(ff){
dist_nfc <- dplyr::filter(.data = nfc, ensembl_gene_id %in% ff) %>%
dplyr::select(external_gene_name) %>% dplyr::distinct() %>% unlist()
paste(dist_nfc, collapse = ",")
}))
return(data.frame(gene = names(fc), loading = fc, PC = f))
})
loadings_plot <- do.call(rbind,fives_list) %>%
dplyr::left_join(top_pc) %>%
dplyr::mutate(PC = paste0(PC, "\n(", percent_variance, ")"))
ggl <- ggplot2::ggplot(data = loadings_plot,
ggplot2::aes_string(x = "PC", y = "loading", label = "gene")) +
ggplot2::geom_point(ggplot2::aes_string(colour = "loading"),
size = 3) +
ggplot2::scale_shape_discrete(solid = T) +
ggrepel::geom_text_repel(colour = "black",
size = 2,
fontface = "bold") +
ggplot2::ggtitle("Loadings plot, top 10 PCs by variance, top/bottom 5 genes") +
ggplot2::xlab("PC (% variance accounted for)")
return(list(ggps, ggs, ggl))
}
#' Parse information from STAR run to find used GTF file
#' @importFrom magrittr '%>%'
#' @export
genesGTF <- function(output_dir = OUTDR){
##get genes.gtf input
genesgtf_file <- system("find work/stage -name genes.gtf | grep -v STAR", intern=T)
system(paste0("cat ", genesgtf_file, " | perl -ane 'if(($F[1] eq \"ensembl\") && ($F[2] eq \"CDS\")){print $_;}' > ", output_dir, "/gene.ensembl.CDS.gtf"))
cds_gtf_idnm <- read_table2(paste0(output_dir, "/gene.ensembl.CDS.gtf")) %>%
dplyr::select(14,16)
##parse CDS from genes.gtf
splitFun <- function(x){unlist(lapply(x, function(f){strsplit(f, '\\"')[[1]][2]}))}
cds_gtf_nm <- tibble(ensembl_gene_id = splitFun(unlist(cds_gtf_idnm[,1])),
external_gene_name = splitFun(unlist(cds_gtf_idnm[,2]))) %>%
distinct() %>%
arrange(ensembl_gene_id)
return(cds_gtf_nm)
}
#' Take two inputs of datasets in biomaRt::useMart and return the tibble of the matched orthologs
#'
#' @param human_genome is the genome against which we want orthologs (set as human but changeble with unknown results)
#' @param org_prefix string indicating the name of the organism which is suffixed with '_gene_ensembl' for biomaRt
#' @param ens_version string indicating version of ENSEMBL to use
#' @return ensid2gene2orth a tibble of orthologs in ensembl - gene name - ortholog
#' @importFrom magrittr '%>%'
#' @export
biomaRt_anno_orth <- function(human_genome = "hsapiens_gene_ensembl", org_prefix = NULL, ens_version = NULL){
##need a way to access versions
##if you know you need a specific version for acces to a specific genome version
##then specify version; otehrwise defaults to latest by below
if(is.null(ens_version)){
ens_version <- rev(strsplit(biomaRt::listMarts()[1,2], " ")[[1]])[1]
}
##specifies the HOST connect (URL)
HOST <- as_tibble(listEnsemblArchives()) %>%
dplyr::filter(version %in% ens_version) %>%
dplyr::select(url) %>% unlist()
##access the two genomes
mart1 <- biomaRt::useMart(biomart = "ensembl", dataset = human_genome, host = HOST)
mart2 <- biomaRt::useMart(biomart = "ensembl", dataset = paste0(org_prefix, "_gene_ensembl"), host = HOST)
##first genome genes with homologs for second genome
ensid2gene1 <- as_tibble(biomaRt::getBM(attributes=c("ensembl_gene_id", "external_gene_name", paste0(org_prefix, "_homolog_ensembl_gene")), mart = mart1))
##second genome, with renaming to allow join with above
renames <- c(paste0(org_prefix,"_homolog_ensembl_gene"),
paste0(org_prefix,"_homolog_external_name"))
ensid2gene2 <- as_tibble(biomaRt::getBM(attributes=c("ensembl_gene_id", "external_gene_name"), mart = mart2))
ensid2gene2 <- dplyr::select(.data = ensid2gene2, !!renames[1] := ensembl_gene_id, !!renames[2] := external_gene_name)
##join to get human and ortholog IDs
ensid2gene2orth <- left_join(ensid2gene1, ensid2gene2, by=renames[1]) %>%
na.omit()
return(ensid2gene2orth)
}