forked from amaliestokholm/asteroseismology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathechelle.py
445 lines (389 loc) · 17.3 KB
/
echelle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
import numpy as np
import scipy
from scipy import ndimage
import matplotlib
from collections import namedtuple
def matplotlib_setup():
""" The setup, which makes nice plots for the report"""
fig_width_pt = 240
inches_per_pt = 1.0 / 72.27
golden_mean = (np.sqrt(5) - 1.0) / 2.0
fig_width = fig_width_pt * inches_per_pt
fig_height = fig_width * golden_mean
fig_size = [fig_width, fig_height]
matplotlib.rc('text', usetex=True)
matplotlib.rc('figure', figsize=fig_size)
matplotlib.rc('font', size=8, family='serif')
matplotlib.rc('axes', labelsize=8)
matplotlib.rc('legend', fontsize=8)
matplotlib.rc('xtick', labelsize=8)
matplotlib.rc('ytick', labelsize=8)
matplotlib.rc('text.latex',
preamble=r'\usepackage[T1]{fontenc}\usepackage{lmodern}')
import matplotlib.pyplot as plt
import seaborn as sns
# Activate Seaborn color aliases
sns.set_palette('colorblind')
sns.set_color_codes(palette='colorblind')
sns.set_context('paper', font_scale=1.7)
sns.set_style("ticks")
ModesBase = namedtuple('Modes', 'l n f inertia error dnu'.split())
class Modes(ModesBase):
def for_l(self, l):
mask = self.l == l
if self.inertia is None:
inertia = None
else:
inertia = self.inertia[mask]
if self.error is None:
error = None
else:
error = self.error[mask]
return Modes(self.l[mask], self.n[mask], self.f[mask],
inertia, error, self.dnu)
def for_n(self, n):
mask = self.n == n
if self.error is None:
error = None
else:
error = self.error[mask]
if self.inertia is None:
inertia = None
else:
inertia = self.inertia[mask]
return Modes(self.l[mask], self.n[mask], self.f[mask],
inertia, error, self.dnu)
def for_ns(self, ns):
fnl = []
for n in ns:
selected = self.for_n(n=n)
fnl.append(selected.f[0])
fnl = np.asarray(fnl)
return fnl
def asarray(self):
if self.inertia is None:
inertia = None
else:
inertia = np.asarray(self.inertia)
if self.error is None:
error = None
else:
error = np.asarray(self.error)
return Modes(l=np.asarray(self.l), n=np.asarray(self.n), f=np.asarray(self.f),
inertia=inertia, error=error, dnu=np.asarray(self.dnu))
def f_as_dict(self):
return self.attribute_as_dict('f')
def inertia_as_dict(self):
return self.attribute_as_dict('inertia')
def error_as_dict(self):
return self.attribute_as_dict('error')
def attribute_as_dict(self, attribute):
keys = zip(self.n, self.l)
values = getattr(self, attribute)
dictionary = dict(zip(keys, values))
return dictionary
def BG14_corr(model_modes, observed_modes):
corrected_modes = Modes(l=[], n=[], f=[], inertia=None, error=None, dnu=model_modes.dnu)
observed_dictionary = observed_modes.f_as_dict()
model_dictionary = model_modes.f_as_dict()
error_dict = observed_modes.error_as_dict()
inertia_dict = model_modes.inertia_as_dict()
nl_keys = sorted(observed_dictionary.keys() & model_dictionary.keys())
N = len(nl_keys)
f_mod = np.asarray([model_dictionary[n, l] for (n,l) in nl_keys])
f_obs = np.asarray([observed_dictionary[n, l] for (n,l) in nl_keys])
errors = np.asarray([error_dict[n, l] for (n,l) in nl_keys])
inertia = 4 * np.pi * np.asarray([inertia_dict[n, l] for (n,l) in nl_keys])
assert len(f_mod) == len(f_obs) == len(errors) == len(inertia) == N
matx = np.zeros((N, 2))
y = (f_obs - f_mod) / errors
matx[:, 0] = f_mod ** (-1) / (inertia * errors)
matx[:, 1] = f_mod ** 3 / (inertia * errors)
coeffs = np.linalg.lstsq(matx, y)[0]
assert coeffs.shape == (2,)
"""
print(coeffs)
print(sorted(inertia))
plt.figure()
plt.plot(sorted(inertia))
"""
df = (coeffs[0] * f_mod ** (-1) + coeffs[1] * f_mod ** 3) / inertia
f_corr = np.asarray(f_mod + df)
corrected_modes.f.extend(f_corr)
n, l = zip(*nl_keys)
corrected_modes.n.extend(n)
corrected_modes.l.extend(l)
"""
plt.figure()
fix_margins()
plt.xlabel(r'$\nu_{{model}}$ [$\mu$Hz]')
plt.ylabel(r'$\nu-\nu_{{model}}$ [$\mu$Hz]')
plt.scatter(f_mod, f_obs - f_mod, c=['rgb'[int(l)] for n, l in nl_keys])
plt.plot(f_mod, df, 'ko')
plt.show()
"""
return corrected_modes, coeffs
def chi(r, a, b, f_mod, f_obs, inertia, errors, nu0):
f_corr = (f_mod + (1 / inertia) * (a / r) * (f_mod / nu0) ** b)
return np.mean(((f_corr - f_obs) / (errors)) ** 2)
def chilist(r_list, a_list, *args):
# chisqr_list = []
# for r, a in zip(r_list, a_list):
# chisqr = chi(r, a, *args)
# chisqr_list.append(chisqr)
# minindex = np.argmin(chisqr_list)
# return r_list[minindex], a_list[minindex]
def key(o):
r, a = o
return chi(r, a, *args)
return min(zip(r_list, a_list), key=key)
def chi_optimize(r, a, *args):
def key(o):
r, a = o
# Regularization: force r to be close to 1
return chi(r, a, *args) + reg(r)
def reg(r):
c = 0 # 10**4
return c * (r-1)**2
print('Before optimize: chi', chi(r, a, *args), 'Regularization', reg(r))
res = scipy.optimize.minimize(key, (r,a), options={'disp':True}, method='Nelder-Mead')
r, a = res.x
print('After optimize: chi', chi(r, a, *args), 'Regularization', reg(r))
return r, a
def kjeldsen_corr(model_modes, observed_modes):
# Kjeldsen correction
# Correcting stellar oscillation frequencies for
# near-surface effects, Kjeldsen et al., 2008
bcor = 4.9 # from a solar model
nu0 = 996
assert len(observed_modes.n)
observed_dictionary = observed_modes.f_as_dict()
model_dictionary = model_modes.f_as_dict()
inertia_dict = model_modes.inertia_as_dict()
error_dict = observed_modes.error_as_dict()
nl_keys = sorted(observed_dictionary.keys() & model_dictionary.keys())
N = len(nl_keys)
dnu = model_modes.dnu
dnu_obs = observed_modes.dnu
corrected_modes = Modes(l=[], n=[], f=[], inertia=None, error=None, dnu=dnu)
f_mod = np.asarray([model_dictionary[n, l] for (n,l) in nl_keys])
f_obs = np.asarray([observed_dictionary[n, l] for (n,l) in nl_keys])
errors = np.asarray([error_dict[n, l] for (n,l) in nl_keys])
# q = np.asarray([inertia_dict[n, 0] for (n,l) in nl_keys])
# inertia = np.asarray([inertia_dict[n, l] for (n,l) in nl_keys]) / q
inertia = np.asarray([inertia_dict[n, l] / inertia_dict[n, 0]
for n, l in nl_keys])
assert len(f_mod) == len(f_obs) == N
r_list = ((bcor - 1) /
(bcor * ((f_mod) / (f_obs)) - ((dnu) / (dnu_obs))))
#bcor = ((r * ((dnu) / (dnu_obs)) - 1) *
# ((r * ((f_mod) / (f_obs)) - 1) ** (-1)))
a_list = ((np.mean(f_obs) - r_list * np.mean(f_mod)) /
(len(f_obs) ** (-1) * np.sum((f_obs / nu0) ** bcor)))
rcor = np.mean(r_list)
acor = np.mean(a_list)
"""
rcor, acor = chilist(r_list, a_list, bcor, f_mod, f_obs, inertia, errors, nu0)
print('Before calling minimizer:', rcor, acor)
rcor, acor = chi_optimize(rcor, acor, bcor, f_mod, f_obs, inertia, errors, nu0)
print('After calling minimizer:', rcor, acor)
"""
f_corr = (f_mod + (1 / inertia) *
(acor / rcor) * (f_mod / nu0) ** bcor)
corrected_modes.f.extend(f_corr)
n, l = zip(*nl_keys)
corrected_modes.n.extend(n)
corrected_modes.l.extend(l)
"""
radial_model_modes = model_modes.for_l(l=0)
plt.figure()
fix_margins()
plt.xlabel(r'$\nu_{{model}}$ [$\mu$Hz]')
plt.ylabel(r'$\nu-\nu_{{model}}$ [$\mu$Hz]')
color = ['dodgerblue', 'limegreen', 'tomato', 'hotpink']
"""
"""
ls_obs = [0] # np.unique(observed_modes.l)
for l in ls_obs:
angular_observed_modes = observed_modes.for_l(l=l)
assert len(angular_observed_modes.n) == len(np.unique(angular_observed_modes.n))
angular_model_modes = model_modes.for_l(l=l)
inertia_l = angular_model_modes.inertia
assert len(angular_model_modes.n)
assert len(angular_observed_modes.n)
ns = set(angular_model_modes.n) & set(angular_observed_modes.n)
ns = sorted(ns)
assert ns
fnl_ref = angular_model_modes.for_ns(ns)
fnl_obs = angular_observed_modes.for_ns(ns)
inertialist = []
for n in ns:
selected = angular_model_modes.for_n(n=n)
inertia_nl, = selected.inertia
inertia_l0s, = radial_model_modes.inertia[radial_model_modes.n == n]
inertias = inertia_nl / inertia_l0s
inertialist.append(inertias)
corrected_modes.n.append(n)
corrected_modes.l.append(l)
inertialist = np.asarray(inertialist)
r = ((bcor - 1) *
(bcor * ((fnl_ref) / (fnl_obs)) - ((dnu) / (dnu_obs))) ** (-1))
#bcor = ((r * ((dnu) / (dnu_obs)) - 1) *
# ((r * ((fnl_ref) / (fnl_obs)) - 1) ** (-1)))
acor = ((np.mean(fnl_obs) - r * np.mean(fnl_ref)) /
(len(fnl_obs) ** (-1) * np.sum((fnl_obs / nu0) ** bcor)))
f_corr = (fnl_ref + (1 / inertialist) * (acor / r) * (fnl_ref / nu0) ** bcor)
corrected_modes.f.extend(f_corr)
l = int(l)
plt.plot(fnl_ref, (fnl_obs - fnl_ref), color=color[l],
label=r'l=%s $\nu_{obs}-\nu_{ref}$'% l, marker='d')
plt.plot(fnl_ref, (f_corr - fnl_ref), color=color[l],
label=r'l=%s $\nu_{corr}-\nu_{ref}$'% l, marker='o')
corrected_modes = corrected_modes.asarray()
"""
"""
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3,
mode="expand", borderaxespad=0., frameon=False)
plt.savefig('./echelle/amalie3_kjeldsen/kjeldsen_%s.pdf' % (dnu), bbox_inches='tight')
plt.close()
"""
chisqr_value = chisqr(observed_modes, corrected_modes)
return corrected_modes, chisqr_value
def chisqr(observed_modes, corrected_modes):
observed_dictionary = observed_modes.f_as_dict()
corrected_dictionary = corrected_modes.f_as_dict()
nl_keys = sorted(observed_dictionary.keys() & corrected_dictionary.keys())
f_corr = np.asarray([corrected_dictionary[n, l] for (n,l) in nl_keys])
f_obs = np.asarray([observed_dictionary[n, l] for (n,l) in nl_keys])
N = len(f_obs)
error_dict = observed_modes.error_as_dict()
errors = np.asarray([error_dict[n, l] for (n,l) in nl_keys])
return ((1 / N) * np.sum(((f_corr - f_obs) / (errors)) ** 2))
def overplot(job, starfile, obsfile, dnu_obs):
starname = starfile.replace('.txt', '')
n_obs, l_obs, f_obs, error_obs = np.loadtxt(
obsfile, skiprows=1, usecols=(0, 1, 2, 3)).T
closestfl0_list = []
chisqr_list = []
dir = './%s/X072669_Y02628_nor/freqs/' % job
fl0_obs = np.array(sorted(f_obs[l_obs == 0]))
nl0_obs = np.array(sorted(n_obs[l_obs == 0]))
datafiles = sorted([s for s in os.listdir(dir) if s.startswith('obs')])
# datafiles = datafiles[7:9]
observed_modes = Modes(n=n_obs, l=l_obs, f=f_obs,
inertia=None, error=error_obs, dnu=dnu_obs)
observed_dictionary = observed_modes.f_as_dict()
for i, datafile in enumerate(datafiles):
if i % 20 == 0:
print(i)
path = os.path.join(dir, datafile)
l, n, f, inertia = np.loadtxt(path, usecols=(0, 1, 2, 3)).T
dnu = np.median(np.diff(f[l == 0]))
model_modes = Modes(l=l, n=n, f=f, inertia=inertia, error=None, dnu=dnu)
model_dictionary = model_modes.f_as_dict()
nl_keys = sorted(observed_dictionary.keys() & model_dictionary.keys())
h, plot_position = echelle(starfile, observed_modes.dnu)
BG14_corrected_modes, coeffs = BG14_corr(model_modes, observed_modes)
HK08_corrected_modes, chisqr = kjeldsen_corr(model_modes, observed_modes)
chisqr_list.append(chisqr)
nl0 = np.array(sorted(n[l == 0]))
HK08_corr_dict = HK08_corrected_modes.f_as_dict()
BG14_corr_dict = BG14_corrected_modes.f_as_dict()
f_mod_l0 = np.asarray([model_dictionary[n, l] for (n,l) in nl_keys if l == 0])
f_obs_l0 = np.asarray([observed_dictionary[n,l] for (n,l) in nl_keys if l == 0])
f_HK08corr_l0 = np.asarray([HK08_corr_dict[n, l] for (n,l) in nl_keys if l == 0])
f_BG14corr_l0 = np.asarray([BG14_corr_dict[n, l] for (n,l) in nl_keys if l == 0])
closestfl0_list.append(f_mod_l0[0])
print(closestfl0_list)
l0color = 'tomato' # 'lightcoral'
l1color = 'firebrick' # 'crimson'
plt.plot(*plot_position(closestfl0_list[i]), 'o',
color=l0color, markersize=7,
label=r'lowest, closest $\nu$ with $l=0$')
plt.plot(*plot_position(fl0_obs[0]), 'd',
color=l0color, markersize=7,
label=r'lowest, closest $\nu_{{obs}}$ with $l=0$')
plt.plot(*plot_position(f_HK08corr_l0),'*', markersize=7,
markeredgewidth=1, markeredgecolor=l0color,
markerfacecolor='none', label=r'$\nu_{HK08 corr}$ with $l=0$')
plt.plot(*plot_position(f_BG14corr_l0),'s', markersize=7,
markeredgewidth=1, markeredgecolor=l0color,
markerfacecolor='none', label=r'$\nu_{BG14 corr}$ with $l=0$')
plt.plot(*plot_position(f_mod_l0), 'o', markersize=7,
markeredgewidth=1, markeredgecolor=l0color,
markerfacecolor='none', label=r'$\nu$ with $l=0$')
plt.plot(*plot_position(fl0_obs), 'd', markersize=7,
markeredgewidth=1, markeredgecolor=l0color,
markerfacecolor='none', label=r'$\nu_{{obs}}$ with $l=0$')
# plt.plot(*plot_position(f[l == 1]), 'o', markersize=7,
# markeredgewidth=1, markeredgecolor=l1color,
# markerfacecolor='none', label=r'$\nu$ with $l=1$')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2,
mode="expand", borderaxespad=0., frameon=False)
plt.savefig('./echelle/%s/echelle/%s_echelle_%03d_%s.pdf' %
(job, starname, i, dnu), bbox_inches='tight')
plt.close()
plt.figure()
# fix_margins()
plt.xlabel(r'$\nu_{{obs}}$ / $\mu$Hz')
plt.ylabel(r'$\nu_{obs}-\nu_{{mod}}$ / $\mu$Hz')
plt.plot(f_obs_l0, (f_obs_l0 - f_mod_l0), color='dodgerblue',
label=r'l=%s $\nu_{obs}-\nu_{mod}$'% 0, marker='d', linestyle='None')
plt.plot(f_obs_l0, (f_obs_l0 - f_HK08corr_l0), color='dodgerblue',
label=r'l=%s $\nu_{obs}-\nu_{HK08 corr}$'% 0, marker='*', linestyle='None')
plt.plot(f_obs_l0, (f_obs_l0 - f_BG14corr_l0), color='dodgerblue',
label=r'l=%s $\nu_{obs}-\nu_{BG14 corr}$'% 0, marker='s', linestyle='None')
plt.plot(f_obs_l0, coeffs[0] * f_mod_l0 ** (-1) + coeffs[1] * f_mod_l0 ** (3))
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2,
mode="expand", borderaxespad=0., frameon=False)
plt.savefig('./echelle/%s/correction/%s_correctionplot%03d_%s.pdf' %
(job, starname, i, dnu), bbox_inches='tight')
plt.close()
print(closestfl0_list[i], n[closestfl0_list[i] == f], fl0_obs[0])
minfl0 = min(closestfl0_list, key=lambda p: abs(p - fl0_obs[0]))
minchisqr = min(chisqr_list)
print(closestfl0_list.index(minfl0), minfl0, fl0_obs[0], chisqr_list.index(minchisqr), minchisqr)
def echelle(filename, delta_nu, save=None):
freq, power = np.loadtxt(filename).T
fres = (freq[-1] - freq[0]) / (len(freq)-1)
numax = (delta_nu / 0.263) ** (1 / 0.772)
nmax = int(np.round(((numax - freq[0]) / delta_nu) - 1))
nx = int(np.round(delta_nu / fres))
assert nx % 2 == 0 # we shift by nx/2 pixels below
dnu = nx * fres
ny = int(np.floor(len(power) / nx))
startorder = nmax - 9
endorder = nmax + 9
# print("%s pixel rows of %s pixels" % (endorder-startorder, nx))
start = int(startorder * nx)
endo = int(endorder * nx)
apower = power[start:endo]
pixeldata = np.reshape(apower, (-1, nx))
def plot_position(freqs):
o = freqs - freq[start]
x = o % dnu
y = start * fres + dnu * np.floor(o / dnu)
return x, y
h = plt.figure()
plt.xlabel(r'Frequency mod $\Delta\nu$ [$\mu$Hz]' % dnu)
plt.ylabel(r'Frequency [$\mu$Hz]')
# Subtract half a pixel in order for data points to show up
# in the middle of the pixel instead of in the lower left corner.
plt.xlim([-fres/2, dnu-fres/2])
plt.ylim([start * fres, endo * fres])
for row in range(pixeldata.shape[0]):
bottom = (start + (nx * row)) * fres
top = (start + (nx * (row + 1))) * fres
blur_data = ndimage.gaussian_filter(pixeldata[row:row+1], 75)
plt.imshow(blur_data, aspect='auto', cmap='Blues',
interpolation='gaussian', origin='lower',
extent=(-fres/2, dnu-fres/2, bottom, top))
if save is not None:
plt.savefig('./%s_echelle_%s.pdf' % ('181096', delta_nu),
bbox_inches='tight')
return h, plot_position
#overplot('amalie3', '181096.txt', 'mikkelfreq.txt', 53.8)
echelle('HD181096_new.txt', 54, save=1)
#echelle('HR7322.ts.fft.bgcorr', 54, save=1)
plt.show()