forked from amaliestokholm/asteroseismology
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkicdata.py
170 lines (147 loc) · 6.36 KB
/
kicdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""
This file defines a function to read and filter the Kepler data
"""
def getdata(ID, kernelsize, quarter, sigma, noisecut):
"""
This function returns the (time, flux)-data from the desired star.
Arguments:
- 'ID': Choice of star
- 'kernelsize': The kernel-size for the median filter.
NB: must be an odd number.
- 'quarters': Chosen period of time
- 'sigma': Limitting sigma for sigma clipping.
- 'noisecut': Added for data sets with instrumental noise.
All data below the noisecut will be removed.
"""
# Import modules
import numpy as np
import scipy.signal
import os
from time import time as now
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import poweroften
# Activate Seaborn color aliases
sns.set_palette('colorblind')
sns.set_color_codes(palette='colorblind')
sns.set_context('paper', font_scale=1.7)
sns.set_style("ticks")
# Find data files in path
datafiles = sorted([s for s in os.listdir('data/%s/kepler' % ID)
if s.endswith('.dat')])
# datafiles = datafiles[0:(int(quarter)+1)]
# Starting time
Q1 = np.loadtxt('./data/%s/kepler/%s' % (ID, datafiles[0]),
skiprows=8)
t0 = Q1[0, 0]
# Iterate over each quarter of Kepler data
totaltime = []
totalflux = []
totaltime_noise = []
totalflux_noise = []
totaldatatime = []
totaldataflux = []
timerStart = now()
for (k, filename) in enumerate(datafiles):
# Load the datafile and save the data in varibles
keplerdata = np.loadtxt('./data/%s/kepler/%s' % (ID, filename),
skiprows=8)
time = keplerdata[:, 0]
flux = keplerdata[:, 1]
# Convert time in truncated barycentric julian date to
# relative time in mega seconds
time -= t0
time *= (60 * 60 * 24) / (1e6)
# Remove invalid data (such as Inf or NaN)
time = time[np.isfinite(flux)]
flux = flux[np.isfinite(flux)]
print('After Inf removal, len=%s' % len(flux))
# Median-filtering (calculate the median and find the diff.)
median = scipy.signal.medfilt(flux, kernelsize)
corr_flux = np.divide(flux, median) - 1
# Sigma clipping
sigmaclip = (abs(corr_flux - np.mean(corr_flux)) <
sigma * np.std(corr_flux))
corr_time_sig = time[sigmaclip]
corr_flux_sig = corr_flux[sigmaclip]
print(' %s data points removed by sigma clipping'
% np.sum(np.logical_not(sigmaclip)))
print('After sigma cut, len=%s and %s' % (len(corr_time_sig),
len(corr_flux_sig)))
# Extra filter in order to remove instrumental noise
#diff = np.diff(corr_flux_sig)
#diff = np.append(diff, [0])
#assert diff.size == corr_flux_sig.size
#diff_sigma = np.std(diff)
#noiseclip = diff < (3 * diff_sigma)
noiseclip = (corr_flux_sig > noisecut)
corr_time_nos = corr_time_sig[noiseclip]
corr_flux_nos = corr_flux_sig[noiseclip]
print(' %s data points removed by noise clipping'
% sum(np.logical_not(noiseclip)))
print('After noise removal, len=%s and %s' % (len(corr_time_nos),
len(corr_flux_nos)))
data_time = corr_time_nos
data_flux = corr_flux_nos
print('After zero removal, len = %s' % len(data_flux))
# Write data to lists
totaltime = np.r_[totaltime, time]
totalflux = np.r_[totalflux, corr_flux]
totaltime_noise = np.r_[totaltime_noise, corr_time_sig[~noiseclip]]
totalflux_noise = np.r_[totalflux_noise, corr_flux_sig[~noiseclip]]
totaldatatime = np.r_[totaldatatime, data_time]
totaldataflux = np.r_[totaldataflux, data_flux]
# Info-print
print('%d/%d: %d data points remain after filtering'
% (k+1, len(datafiles), len(totaldatatime)))
elapsedTime = now() - timerStart
print("Iteration over the quarters took %.2f s" % elapsedTime)
# Plot the raw data
plt.figure()
"""
The next step replaces datapoints in the most dense areas of the
time series with a filled figure. This is only done in order to
minimize the rendering time of the figure in the pdf file.
This should only be used for plot optimisation.
"""
"""
totaldatatime_norect = totaldatatime
totaldataflux_norect = totaldataflux
rects = [
((0.01, 2.65), (-0.5e-4, +0.5e-4)),
((2.76, 3.38), (-0.5e-4, +0.5e-4)),
((3.89, 5.33), (-0.5e-4, +0.5e-4)),
]
rect_points = 0
for (x1, x2), (y1, y2) in rects:
f = ((x1 <= totaldatatime_norect) & (totaldatatime_norect <= x2) &
(y1 <= totaldataflux_norect) & (totaldataflux_norect <= y2))
rect_points += f.sum()
totaldatatime_norect = totaldatatime_norect[~f]
totaldataflux_norect = totaldataflux_norect[~f]
plt.fill([x1, x2, x2, x1], [y1, y1, y2, y2], 'k')
print("%d/%d points coalesced to %d rectangles" %
(rect_points, len(totaldatatime), len(rects)))
plt.fill([np.amin(totaldatatime), np.amax(totaldatatime),
np.amax(totaldatatime), np.amin(totaldatatime)],
[noisecut, noisecut, -np.amax(totaldataflux),
-np.amax(totaldataflux)], color='0.75')
plt.plot(totaldatatime_norect, totaldataflux_norect,
color='k', marker='.', ms=1, linestyle='None')
"""
plt.plot(totaldatatime[::10], totaldataflux[::10]
, color='navy', marker='.', ms=5,
linestyle='None',alpha=0.75
)
plt.plot(totaltime_noise[::10], totalflux_noise[::10]
, color='slategrey', marker='x', ms=5, linestyle='None', mew=1
)
plt.xlabel(r'Relative time [Ms]')
plt.ylabel(r'Relative photometry')
plt.xlim([np.amin(totaldatatime), np.amax(totaldatatime)])
plt.ylim([-np.amax(totaldataflux), np.amax(totaldataflux)])
plt.gca().get_yaxis().set_major_formatter(poweroften.MyScalarFormatter())
plt.gca().get_yaxis().get_major_formatter().set_powerlimits([-4, 4])
plt.savefig('rawdata.pdf', bbox_inches='tight')
return (totaldatatime, totaldataflux)