-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_gwgan_cnn.py
250 lines (213 loc) · 7.77 KB
/
main_gwgan_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/python
# author: Charlotte Bunne
# imports
import numpy as np
import matplotlib.pyplot as plt
import torch
import pickle
import os
from time import time
from torchvision import datasets, transforms
from torchvision.utils import save_image
# internal imports
from model.utils import *
from model.model_cnn import Generator, Adversary
from model.model_cnn import weights_init_generator, weights_init_adversary
from model.loss import gwnorm_distance, loss_total_variation, loss_procrustes
# get arguments
args = get_args()
# system preferences
seed = np.random.randint(100)
torch.set_default_dtype(torch.double)
np.random.seed(seed)
torch.manual_seed(seed)
# settings
batch_size = 256
z_dim = 100
lr = 0.0002
ngen = 3
beta = args.beta
lam = 0.5
niter = 10
epsilon = 0.005
num_epochs = args.num_epochs
cuda = args.cuda
channels = args.n_channels
id = args.id
model = 'gwgan_{}_eps_{}_tv_{}_procrustes_{}_ngen_{}_channels_{}_{}' \
.format(args.data, epsilon, lam, beta, ngen, channels, id)
save_fig_path = 'out_' + model
if not os.path.exists(save_fig_path):
os.makedirs(save_fig_path)
# data import
if args.data == 'mnist':
dataloader = torch.utils.data.DataLoader(
datasets.MNIST('./data/mnist', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])),
batch_size=batch_size, drop_last=True, shuffle=True)
elif args.data == 'fmnist':
dataloader = torch.utils.data.DataLoader(
datasets.FashionMNIST('./data/fmnist', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])),
batch_size=batch_size, drop_last=True, shuffle=True)
elif args.data == 'cifar_gray':
dataloader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data/cifar10', train=True, download=True,
transform=transforms.Compose([
# transform RGB to grayscale
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])),
batch_size=batch_size, drop_last=True, shuffle=True)
elif args.data == 'cifar':
dataloader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data/cifar10', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))])),
batch_size=batch_size, drop_last=True, shuffle=True)
else:
raise NotImplementedError('dataset does not exist or not integrated.')
# print example images
save_image(next(iter(dataloader))[0][:25],
os.path.join(save_fig_path, 'real.pdf'), nrow=5, normalize=True)
# define networks and parameters
generator = Generator(output_dim=channels)
adversary = Adversary(input_dim=channels)
# weight initialisation
generator.apply(weights_init_generator)
adversary.apply(weights_init_adversary)
if cuda:
generator = generator.cuda()
adversary = adversary.cuda()
# create optimizer
g_optimizer = torch.optim.Adam(generator.parameters(), lr, betas=(0.5, 0.99))
# zero gradients
generator.zero_grad()
c_optimizer = torch.optim.Adam(adversary.parameters(), lr, betas=(0.5, 0.99))
# zero gradients
adversary.zero_grad()
# sample for plotting
num_test_samples = batch_size
z_ex = torch.randn(num_test_samples, z_dim)
if cuda:
z_ex = z_ex.cuda()
loss_history = list()
loss_tv = list()
loss_orth = list()
loss_og = 0
is_hist = list()
for epoch in range(num_epochs):
t0 = time()
for it, (image, _) in enumerate(dataloader):
train_c = ((it + 1) % (ngen + 1) == 0)
x = image.double()
if cuda:
x = x.cuda()
# sample random number z from Z
z = torch.randn(image.shape[0], z_dim)
if cuda:
z = z.cuda()
if train_c:
for q in generator.parameters():
q.requires_grad = False
for p in adversary.parameters():
p.requires_grad = True
else:
for q in generator.parameters():
q.requires_grad = True
for p in adversary.parameters():
p.requires_grad = False
# result generator
g = generator.forward(z)
# result adversary
f_x = adversary.forward(x)
f_g = adversary.forward(g)
# compute inner distances
D_g = get_inner_distances(f_g, metric='euclidean', concat=False)
D_x = get_inner_distances(f_x, metric='euclidean', concat=False)
# distance matrix normalisation
D_x_norm = normalise_matrices(D_x)
D_g_norm = normalise_matrices(D_g)
# compute normalized gromov-wasserstein distance
loss, T = gwnorm_distance((D_x, D_x_norm), (D_g, D_g_norm),
epsilon, niter, loss_fun='square_loss',
coupling=True, cuda=cuda)
if train_c:
# train adversary
loss_og = loss_procrustes(f_x, x.view(x.shape[0], -1), cuda)
loss_to = -loss + beta * loss_og
loss_to.backward()
# parameter updates
c_optimizer.step()
# zero gradients
reset_grad(generator, adversary)
else:
# train generator
loss_t = loss_total_variation(g)
loss_to = loss + lam * loss_t
loss_to.backward()
# parameter updates
g_optimizer.step()
# zero gradients
reset_grad(generator, adversary)
# plotting
# get generator example
g_ex = generator.forward(z_ex)
g_plot = g_ex.cpu().detach()
# plot result
save_image(g_plot.data[:25],
os.path.join(save_fig_path, 'g_%d.pdf' % epoch),
nrow=5, normalize=True)
fig1, ax = plt.subplots(1, 3, figsize=(15, 5))
ax0 = ax[0].imshow(T.cpu().detach().numpy(), cmap='RdBu_r')
colorbar(ax0)
ax1 = ax[1].imshow(D_x.cpu().detach().numpy(), cmap='Blues')
colorbar(ax1)
ax2 = ax[2].imshow(D_g.cpu().detach().numpy(), cmap='Blues')
colorbar(ax2)
ax[0].set_title(r'$T$')
ax[1].set_title(r'inner distances of $D$')
ax[2].set_title(r'inner distances of $G$')
plt.tight_layout(h_pad=1)
fig1.savefig(os.path.join(save_fig_path, '{}_ccc.pdf'.format(
str(epoch).zfill(3))), bbox_inches='tight')
loss_history.append(loss)
loss_tv.append(loss_t)
loss_orth.append(loss_og)
plt.close('all')
# plot loss history
fig2 = plt.figure(figsize=(2.4, 2))
ax2 = fig2.add_subplot(111)
ax2.plot(loss_history, 'k.')
ax2.set_xlabel('Iterations')
ax2.set_ylabel(r'$\overline{GW}_\epsilon$ Loss')
plt.tight_layout()
plt.grid()
fig2.savefig(save_fig_path + '/loss_history.pdf')
fig3 = plt.figure(figsize=(2.4, 2))
ax3 = fig3.add_subplot(111)
ax3.plot(loss_tv, 'k.')
ax3.set_xlabel('Iterations')
ax3.set_ylabel(r'Total Variation Loss')
plt.tight_layout()
plt.grid()
fig3.savefig(save_fig_path + '/loss_tv.pdf')
fig4 = plt.figure(figsize=(2.4, 2))
ax4 = fig4.add_subplot(111)
ax4.plot(loss_orth, 'k.')
ax4.set_xlabel('Iterations')
ax4.set_ylabel(r'$R_\beta(f_\omega(X), X)$ Loss')
plt.tight_layout()
plt.grid()
fig4.savefig(save_fig_path + '/loss_orth.pdf')