-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_hsc_primary.py
785 lines (621 loc) · 28.2 KB
/
train_hsc_primary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
# Training script for decam data
try:
# ignore ShapelyDeprecationWarning from fvcore
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
warnings.filterwarnings('ignore', category=RuntimeWarning)
# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import numpy as np
import os, json, cv2, random
import argparse
import logging
import sys
import gc
#from google.colab.patches import cv2_imshow
import matplotlib.pyplot as plt
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data import build_detection_train_loader
from detectron2.engine import DefaultTrainer
from detectron2.engine import DefaultTrainer,SimpleTrainer, HookBase, default_argument_parser, default_setup, hooks, launch
from typing import Dict, List, Optional
import detectron2.solver as solver
import detectron2.modeling as modeler
import detectron2.data as data
import detectron2.data.transforms as T
import detectron2.checkpoint as checkpointer
from detectron2.data import detection_utils as utils
import detectron2.utils.comm as comm
import weakref
import copy
import torch
import time
import imgaug.augmenters as iaa
from astrodet import astrodet as toolkit
from astrodet import detectron as detectron_addons
import imgaug.augmenters.flip as flip
import imgaug.augmenters.blur as blur
# Prettify the plotting
from astrodet.astrodet import set_mpl_style
set_mpl_style()
from detectron2.structures import BoxMode
from astropy.io import fits
from astropy.visualization import make_lupton_rgb
import glob
from astrodet.detectron import _transform_to_aug
from PIL import Image, ImageEnhance
# ### Register Astro R-CNN dataset
def data_register_and_load(dataset_names,filenames_dict_list):
# Dataset loading can take a while
print('Data loading may take a few minutes')
dataset_dicts = {}
for i, d in enumerate(dataset_names):
print(f'Loading {d}')
dataset_dicts[d] = get_astro_dicts(filenames_dict_list[i])
return dataset_dicts
def get_data_from_json(file):
# Opening JSON file
with open(file, 'r') as f:
data = json.load(f)
return data
def read_image(filenames, normalize='lupton', stretch=0.5, Q=10, m=0, ceil_percentile=99.995, dtype=np.uint8, A=1e4, do_norm=True):
def norm(z,r,g):
max_RGB = np.nanpercentile([z, r, g], ceil_percentile)
print(max_RGB)
max_z=np.nanpercentile([z], ceil_percentile)
max_r=np.nanpercentile([r], ceil_percentile)
max_g=np.nanpercentile([g], ceil_percentile)
#z = np.clip(z,None,max_RGB)
#r = np.clip(r,None,max_RGB)
#g = np.clip(g,None,max_RGB)
# avoid saturation
r = r/max_RGB; g = g/max_RGB; z = z/max_RGB
#r = r/max_r; g = g/max_g; z = z/max_z
# Rescale to 0-255 for dtype=np.uint8
max_dtype = np.iinfo(dtype).max
r = r*max_dtype
g = g*max_dtype
z = z*max_dtype
# 0-255 RGB image
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
return image
# Read image
g = fits.getdata(os.path.join(filenames[0]), memmap=False)
r = fits.getdata(os.path.join(filenames[1]), memmap=False)
z = fits.getdata(os.path.join(filenames[2]), memmap=False)
# Contrast scaling / normalization
I = (z + r + g)/3.0
length, width = g.shape
image = np.empty([length, width, 3], dtype=dtype)
#asinh(Q (I - minimum)/stretch)/Q
# Options for contrast scaling
if normalize.lower() == 'lupton' or normalize.lower() == 'luptonhc':
z = z*np.arcsinh(stretch*Q*(I - m))/(Q*I)
r = r*np.arcsinh(stretch*Q*(I - m))/(Q*I)
g = g*np.arcsinh(stretch*Q*(I - m))/(Q*I)
#z = z*np.arcsinh(Q*(I - m)/stretch)/(Q)
#r = r*np.arcsinh(Q*(I - m)/stretch)/(Q)
#g = g*np.arcsinh(Q*(I - m)/stretch)/(Q)
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
if do_norm:
return norm(z,r,g)
else:
return image
elif normalize.lower() == 'astrolupton':
image = make_lupton_rgb(z, r, g, minimum=m, stretch=stretch, Q=Q)
return image
elif normalize.lower() == 'zscore':
Imean = np.nanmean(I)
Isigma = np.nanstd(I)
z = A*(z - Imean - m)/Isigma
r = A*(r - Imean - m)/Isigma
g = A*(g - Imean - m)/Isigma
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
if do_norm:
return norm(z,r,g)
else:
return image
elif normalize.lower() == 'zscore_orig':
zsigma = np.nanstd(z)
rsigma = np.nanstd(r)
gsigma = np.nanstd(g)
z = A*(z - np.nanmean(z) - m)/zsigma
r = A*(r - np.nanmean(r) - m)/rsigma
g = A*(g - np.nanmean(g) - m)/gsigma
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
return image
elif normalize.lower() == 'sinh':
z = np.sinh((z-m))
r = np.sinh((r-m))
g = np.sinh((g-m))
#sqrt(Q (I - minimum)/stretch)/Q
elif normalize.lower() == 'sqrt':
z = z*np.sqrt((I-m)*Q/stretch)/I/stretch
r = r*np.sqrt((I-m)*Q/stretch)/I/stretch
g = g*np.sqrt((I-m)*Q/stretch)/I/stretch
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
if do_norm:
return norm(z,r,g)
else:
return image
elif normalize.lower() == 'sqrt-old':
z = np.sqrt(z)
r = np.sqrt(r)
g = np.sqrt(g)
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
if do_norm:
return norm(z,r,g)
else:
return image
elif normalize.lower() == 'linear':
z = A*(z - m)
r = A*(r - m)
g = A*(g - m)
#z = (z - m)
#r = (r - m)
#g = (g - m)
image[:,:,0] = z # R
image[:,:,1] = r # G
image[:,:,2] = g # B
return image
elif normalize.lower() == 'normlinear':
#image = np.empty([length, width, 3], dtype=dtype)
z = A*(z - m)
r = A*(r - m)
g = A*(g - m)
#z = (z - m)
#r = (r - m)
#g = (g - m)
#image[:,:,0] = z # R
#image[:,:,1] = r # G
#image[:,:,2] = g # B
#return image
elif normalize.lower() == 'astroluptonhc':
image = make_lupton_rgb(z, r, g, minimum=m, stretch=stretch, Q=Q)
factor = 2 #gives original image
cenhancer = ImageEnhance.Contrast(Image.fromarray(image))
im_output = cenhancer.enhance(factor)
benhancer = ImageEnhance.Brightness(im_output)
image = benhancer.enhance(factor)
image = np.asarray(image)
return image
else:
print('Normalize keyword not recognized.')
# ### Augment Data
def gaussblur(image):
aug = iaa.GaussianBlur(sigma=(0.0, np.random.random_sample()*4+2))
return aug.augment_image(image)
def addelementwise16(image):
aug = iaa.AddElementwise((-3276, 3276))
return aug.augment_image(image)
def addelementwise8(image):
aug = iaa.AddElementwise((-25, 25))
return aug.augment_image(image)
def addelementwise(image):
aug = iaa.AddElementwise((-image.max()*.1, image.max()*.1))
return aug.augment_image(image)
def centercrop(image):
h, w = image.shape[:2]
hc = (h-h//2)//2
wc = (w-w//2)//2
image = image[hc:hc+h//2,wc:wc+w//2]
return image
class train_mapper_cls:
def __init__(self,**read_image_args):
self.ria = read_image_args
def __call__(self,dataset_dict):
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
filenames=[dataset_dict['filename_G'],dataset_dict['filename_R'],dataset_dict['filename_I']]
#image = read_image(dataset_dict["file_name"], normalize=args.norm, ceil_percentile=99.99)
image = read_image(filenames, normalize = self.ria['normalize'],
ceil_percentile = self.ria['ceil_percentile'], dtype=self.ria['dtype'],
A=self.ria['A'],stretch=self.ria['stretch'],Q=self.ria['Q'],do_norm=self.ria['do_norm'])
'''
augs = T.AugmentationList([
T.RandomRotation([-90, 90, 180], sample_style='choice'),
T.RandomFlip(prob=0.5),
T.RandomFlip(prob=0.5,horizontal=False,vertical=True),
T.Resize((512,512))
])
'''
augs = detectron_addons.KRandomAugmentationList([
# my custom augs
T.RandomRotation([-90, 90, 180], sample_style='choice'),
T.RandomFlip(prob=0.5),
T.RandomFlip(prob=0.5,horizontal=False,vertical=True),
#detectron_addons.CustomAug(gaussblur,prob=1.0),
#detectron_addons.CustomAug(addelementwise,prob=1.0)
#CustomAug(white),
],
k=-1,
#cropaug=T.RandomCrop('relative',(0.5,0.5))
cropaug=_transform_to_aug(T.CropTransform(image.shape[1]//4,image.shape[0]//4,image.shape[1]//2,image.shape[0]//2)),
#cropaug=None
)
# Data Augmentation
auginput = T.AugInput(image)
# Transformations to model shapes
transform = augs(auginput)
image = torch.from_numpy(auginput.image.copy().transpose(2, 0, 1))
annos = [
utils.transform_instance_annotations(annotation, [transform], image.shape[1:])
for annotation in dataset_dict.pop("annotations")
]
instances = utils.annotations_to_instances(annos, image.shape[1:])
instances = utils.filter_empty_instances(instances)
return {
# create the format that the model expects
"image": image,
"image_shaped": auginput.image,
"height": image.shape[1],
"width": image.shape[2],
"image_id": dataset_dict["image_id"],
"instances": instances,
#"instances": utils.annotations_to_instances(annos, image.shape[1:])
}
class test_mapper_cls:
def __init__(self,**read_image_args):
self.ria = read_image_args
def __call__(self,dataset_dict):
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
filenames=[dataset_dict['filename_G'],dataset_dict['filename_R'],dataset_dict['filename_I']]
image = read_image(filenames, normalize = self.ria['normalize'],
ceil_percentile = self.ria['ceil_percentile'], dtype=self.ria['dtype'],
A=self.ria['A'],stretch=self.ria['stretch'],Q=self.ria['Q'],do_norm=self.ria['do_norm'])
#augs = detectron_addons.KRandomAugmentationList([
# # my custom augs
# T.RandomRotation([-90, 90, 180], sample_style='choice'),
# T.RandomFlip(prob=0.5),
# T.RandomFlip(prob=0.5,horizontal=False,vertical=True),
# CustomAug(gaussblur,prob=1.0),
# CustomAug(addelementwise,prob=1.0)
# #CustomAug(white),
# ],
# k=-1
#)
augs = T.AugmentationList([
#T.RandomCrop('relative',(0.5,0.5))
#T.Resize((512,512))
T.CropTransform(image.shape[1]//4,image.shape[0]//4,image.shape[1]//2,image.shape[0]//2)
])
# Data Augmentation
auginput = T.AugInput(image)
# Transformations to model shapes
transform = augs(auginput)
image = torch.from_numpy(auginput.image.copy().transpose(2, 0, 1))
annos = [
utils.transform_instance_annotations(annotation, [transform], image.shape[1:])
for annotation in dataset_dict.pop("annotations")
]
instances = utils.annotations_to_instances(annos, image.shape[1:])
instances = utils.filter_empty_instances(instances)
return {
# create the format that the model expects
"image": image,
"image_shaped": auginput.image,
"height": image.shape[1],
"width": image.shape[2],
"image_id": dataset_dict["image_id"],
"instances": instances,
#"instances": utils.annotations_to_instances(annos, image.shape[1:]),
#"annotations": annos
}
def main(tl,dataset_names,train_head,args):
# Hack if you get SSL certificate error
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
output_dir = args.output_dir
output_name=args.run_name
cfgfile=args.cfgfile
dirpath = args.data_dir # Path to dataset
scheme = args.scheme
alphas = args.alphas
datatype = args.dtype
if datatype==8:
dtype = np.uint8
elif datatype==16:
dtype = np.int16
# ### Prepare For Training
# Training logic:
# To replicate 2019 methodology, need to
# 1) run intially with backbone frozen (freeze_at=4) for 15 epochs
# 2) unfreeze and run for [25,35,50] epochs with lr decaying by 0.1x each time
#trainfile=dirpath+dataset_names[0]+'_sample_scheme%dp_no2.json' %scheme
#testfile=dirpath+dataset_names[1]+'_sample_scheme%dp_no2.json' %scheme
#valfile=dirpath+dataset_names[2]+'_sample_scheme%dp_no2.json' %scheme
trainfile=dirpath+dataset_names[0]+'_sample_new.json'
testfile=dirpath+dataset_names[1]+'_sample_new.json'
valfile=dirpath+dataset_names[2]+'_sample_new.json'
if scheme ==1 or scheme ==3:
classes =["star", "galaxy","bad_fit","unknown"]
elif scheme ==2 or scheme ==-1:
#classes =["star", "galaxy","bad_fit"]
classes=["star", "galaxy"]
numclasses = len(classes)
DatasetCatalog.register("astro_train", lambda: get_data_from_json(trainfile))
MetadataCatalog.get("astro_train").set(thing_classes=classes)
astrotrain_metadata = MetadataCatalog.get("astro_train") # astro_test dataset needs to exist
#DatasetCatalog.register("astro_test", lambda: get_data_from_json(testfile))
#MetadataCatalog.get("astro_test").set(thing_classes=["star", "galaxy","other"])
#astrotest_metadata = MetadataCatalog.get("astro_test") # astro_test dataset needs to exist
#DatasetCatalog.register("astro_val", lambda: get_data_from_json(valfile))
DatasetCatalog.register("astro_val", lambda: get_data_from_json(testfile))
MetadataCatalog.get("astro_val").set(thing_classes=classes)
astroval_metadata = MetadataCatalog.get("astro_val") # astro_test dataset needs to exist
#treg=time.time()
#DatasetCatalog.register("astro_train", lambda: get_astro_dicts(filenames_dict_list[0]))
#MetadataCatalog.get("astro_train").set(thing_classes=["star", "galaxy","other"])
#DatasetCatalog.register("astro_test", lambda: get_astro_dicts(filenames_dict_list[1]))
#MetadataCatalog.get("astro_test").set(thing_classes=["star", "galaxy","other"])
#DatasetCatalog.register("astro_val", lambda: get_astro_dicts(filenames_dict_list[2]))
#MetadataCatalog.get("astro_val").set(thing_classes=["star", "galaxy","other"])
#if comm.is_main_process():
# print('Data register time ', time.time()-treg)
#astrotrain_metadata = MetadataCatalog.get("astro_train") # astro_test dataset needs to exist
#astrotest_metadata = MetadataCatalog.get("astro_test") # astro_test dataset needs to exist
#astrotval_metadata = MetadataCatalog.get("astro_val") # astro_test dataset needs to exist
#astro_metadata = MetadataCatalog.get("astro_train")
#print(len(filenames_dict_list[0]['g']['img'][0]))
#tl=len(filenames_dict_list[0]['g']['img'])
#tl=200
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(cfgfile)) # Get model structure
cfg.DATASETS.TRAIN = ("astro_train") # Register Metadata
cfg.DATASETS.TEST = ("astro_val") # Config calls this TEST, but it should be the val dataset
#cfg.TEST.EVAL_PERIOD = 40
cfg.DATALOADER.NUM_WORKERS = 1
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
cfg.MODEL.ROI_HEADS.NUM_CLASSES = numclasses
#cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES = 3
cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 512
if args.norm=='astrolupton':
cfg.MODEL.PIXEL_MEAN = [13.49794151, 9.11051305, 5.42995532]
elif args.norm=='astroluptonhc':
cfg.MODEL.PIXEL_MEAN = [37.92064421, 25.80468069, 14.03756261]
elif args.norm=='zscore':
cfg.MODEL.PIXEL_MEAN = [1.02938894, -11.65404583, -26.35697284]
#cfg.INPUT.MIN_SIZE_TRAIN = 1025
#cfg.INPUT.MAX_SIZE_TRAIN = 1050
cfg.INPUT.MIN_SIZE_TRAIN = 500
cfg.INPUT.MAX_SIZE_TRAIN = 525
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[8, 16, 32, 64, 128]]
cfg.SOLVER.IMS_PER_BATCH = 8 # this is images per iteration. 1 epoch is len(images)/(ims_per_batch iterations)
cfg.OUTPUT_DIR = output_dir
cfg.TEST.DETECTIONS_PER_IMAGE = 1000
cfg.SOLVER.CLIP_GRADIENTS.ENABLED = True
# Type of gradient clipping, currently 2 values are supported:
# - "value": the absolute values of elements of each gradients are clipped
# - "norm": the norm of the gradient for each parameter is clipped thus
# affecting all elements in the parameter
cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "norm"
# Maximum absolute value used for clipping gradients
# Floating point number p for L-p norm to be used with the "norm"
# gradient clipping type; for L-inf, please specify .inf
cfg.SOLVER.CLIP_GRADIENTS.NORM_TYPE = 5.0
# iterations for 15,25,35,50 epochs
epoch = int(tl/cfg.SOLVER.IMS_PER_BATCH)
e1=epoch*15
e2=epoch*10
e3=epoch*20
efinal=epoch*35
val_per = epoch
#val_per = 100
cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN=6000
cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.33
#cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE= args.do_fl
#cfg.MODEL.ROI_BOX_HEAD.GAMMA=2 #changed roi head code, need this in the config
#cfg.MODEL.ROI_BOX_HEAD.ALPHAS=alphas
if train_head:
# Step 1)
cfg.MODEL.BACKBONE.FREEZE_AT = 4 # Initial re-training of the head layers (i.e. freeze the backbone)
if args.from_scratch:
cfg.MODEL.BACKBONE.FREEZE_AT=0
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.STEPS = [] # do not decay learning rate for retraining
cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
cfg.SOLVER.WARMUP_ITERS = 0
cfg.SOLVER.MAX_ITER = e1 # for DefaultTrainer
#init_coco_weights = True # Start training from MS COCO weights
if not args.from_scratch:
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(cfgfile) # Initialize from MS COCO
#else:
# cfg.MODEL.WEIGHTS = os.path.join(output_dir, 'model_temp.pth') # Initialize from a local weights
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
model = modeler.build_model(cfg)
optimizer = solver.build_optimizer(cfg, model)
_train_mapper = train_mapper_cls(normalize=args.norm,ceil_percentile=args.cp,
dtype=dtype,A=args.A,stretch=args.stretch,Q=args.Q,do_norm=args.do_norm)
_test_mapper = test_mapper_cls(normalize=args.norm,ceil_percentile=args.cp,
dtype=dtype,A=args.A,stretch=args.stretch,Q=args.Q,do_norm=args.do_norm)
loader = data.build_detection_train_loader(cfg, mapper=_train_mapper)
test_loader = data.build_detection_test_loader(cfg,cfg.DATASETS.TEST,mapper=_test_mapper)
saveHook = detectron_addons.SaveHook()
saveHook.set_output_name(output_name)
schedulerHook = detectron_addons.CustomLRScheduler(optimizer=optimizer)
lossHook = detectron_addons.LossEvalHook(val_per, model, test_loader)
hookList = [lossHook,schedulerHook,saveHook]
#hookList = [schedulerHook,saveHook]
trainer = toolkit.NewAstroTrainer(model, loader, optimizer, cfg)
trainer.register_hooks(hookList)
trainer.set_period(int(epoch/2)) # print loss every n iterations
trainer.train(0,e1)
#trainer.set_period(5)
#trainer.train(0,20)
if comm.is_main_process():
np.save(output_dir+output_name+'_losses',trainer.lossList)
np.save(output_dir+output_name+'_val_losses',trainer.vallossList)
return
else:
# Step 2)
cfg.MODEL.BACKBONE.FREEZE_AT = 0 # unfreeze all backbone layers
cfg.SOLVER.BASE_LR = 0.0001
cfg.SOLVER.STEPS = [e2,e3] # decay learning rate
cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR"
cfg.SOLVER.WARMUP_ITERS = 0
cfg.SOLVER.MAX_ITER = efinal # for LR scheduling
cfg.MODEL.WEIGHTS = os.path.join(output_dir, output_name+'.pth') # Initialize from a local weights
_train_mapper = train_mapper_cls(normalize=args.norm,ceil_percentile=args.cp,
dtype=dtype,A=args.A,stretch=args.stretch,Q=args.Q,do_norm=args.do_norm)
_test_mapper = test_mapper_cls(normalize=args.norm,ceil_percentile=args.cp,
dtype=dtype,A=args.A,stretch=args.stretch,Q=args.Q,do_norm=args.do_norm)
model = modeler.build_model(cfg)
optimizer = solver.build_optimizer(cfg, model)
loader = data.build_detection_train_loader(cfg, mapper=_train_mapper)
test_loader = data.build_detection_test_loader(cfg,cfg.DATASETS.TEST,mapper=_test_mapper)
saveHook = detectron_addons.SaveHook()
saveHook.set_output_name(output_name)
schedulerHook = detectron_addons.CustomLRScheduler(optimizer=optimizer)
lossHook = detectron_addons.LossEvalHook(val_per, model, test_loader)
hookList = [lossHook,schedulerHook,saveHook]
#hookList = [schedulerHook,saveHook]
trainer = toolkit.NewAstroTrainer(model, loader, optimizer, cfg)
trainer.register_hooks(hookList)
trainer.set_period(int(epoch/2)) # print loss every n iterations
trainer.train(0,efinal)
#trainer.set_period(5) # print loss every n iterations
#trainer.train(0,20)
if comm.is_main_process():
losses = np.load(output_dir+output_name+'_losses.npy')
losses = np.concatenate((losses,trainer.lossList))
np.save(output_dir+output_name+'_losses',losses)
vallosses = np.load(output_dir+output_name+'_val_losses.npy')
vallosses= np.concatenate((vallosses,trainer.vallossList))
np.save(output_dir+output_name+'_val_losses',vallosses)
return
def custom_argument_parser(epilog=None):
"""
Create a parser with some common arguments used by detectron2 users.
Args:
epilog (str): epilog passed to ArgumentParser describing the usage.
Returns:
argparse.ArgumentParser:
"""
parser = argparse.ArgumentParser(
epilog=epilog
or f"""
Examples:
Run on single machine:
$ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml
Change some config options:
$ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001
Run on multiple machines:
(machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags]
(machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags]
""",
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume from the checkpoint directory. "
"See documentation of `DefaultTrainer.resume_or_load()` for what it means.",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
parser.add_argument("--num-machines", type=int, default=1, help="total number of machines")
parser.add_argument("--run-name", type=str, default='baseline', help="output name for run")
parser.add_argument("--cfgfile", type=str, default='COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml', help="path to model config file")
parser.add_argument("--norm", type=str, default='lupton', help="contrast scaling")
parser.add_argument("--data-dir", type=str, default='/home/shared/hsc/HSC/HSC_DR3/data/', help="directory with data")
parser.add_argument("--output-dir", type=str, default='./', help="output directory to save model")
parser.add_argument(
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
)
parser.add_argument("--cp", type=float, default=99.99, help="ceiling percentile for saturation cutoff")
parser.add_argument("--scheme", type=int, default=1, help="classification scheme")
parser.add_argument("--stretch", type=float, default=0.5, help="lupton stretch")
parser.add_argument("--Q", type=float, default=10, help="lupton Q")
parser.add_argument("--A", type=float, default=1e3, help="scaling factor for int16")
parser.add_argument("--do-norm", action="store_true", help="normalize input image (ignore if lupton)")
parser.add_argument("--dtype", type=int, default=8, help="data type of array")
parser.add_argument("--do-fl", action="store_true", help="use focal loss")
parser.add_argument("--alphas", type=float, nargs='*', help="weights for focal loss")
parser.add_argument("--from-scratch", action="store_true", help="use this if you don't want to use pretrained weights")
# PyTorch still may leave orphan processes in multi-gpu training.
# Therefore we use a deterministic way to obtain port,
# so that users are aware of orphan processes by seeing the port occupied.
port = 2**15 + 2**14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2**14
parser.add_argument(
"--dist-url",
default="tcp://127.0.0.1:{}".format(port),
help="initialization URL for pytorch distributed backend. See "
"https://pytorch.org/docs/stable/distributed.html for details.",
)
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
return parser
if __name__ == "__main__":
args = custom_argument_parser().parse_args()
print("Command Line Args:", args)
dirpath = '/home/shared/hsc/HSC/HSC_DR3/data/' # Path to dataset
#dirpath = '/home/shared/hsc/decam/decam_data/' # Path to dataset
dataset_names = ['train', 'test', 'val']
#filenames_dict_list = get_dict_lists(dataset_names,dirpath,args.sample_number)
traind = get_data_from_json(os.path.join(dirpath,dataset_names[0])+'_sample.json')
testd = get_data_from_json(os.path.join(dirpath,dataset_names[2])+'_sample.json')
#number of total samples
print('# of train sample: ', len(traind))
print('# of val sample: ', len(testd))
tl = len(traind)
del traind,testd
gc.collect()
#dataset_dicts = data_register_and_load(dataset_names,filenames_dict_list)
#for i, d in enumerate(dataset_names):
# filenames_dir = os.path.join(dirpath,d)
# DatasetCatalog.register("astro_" + d, lambda: get_astro_dicts(filenames_dir))
# MetadataCatalog.get("astro_" + d).set(thing_classes=["star", "galaxy"], things_colors = ['blue', 'gray'])
print('Training head layers')
train_head=True
t0=time.time()
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(tl,dataset_names,train_head,args,),
)
print('Training full model')
train_head=False
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(tl,dataset_names,train_head,args,),
)
print(f'Took {time.time()-t0} seconds')