-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_deit.py
271 lines (227 loc) · 13.1 KB
/
train_deit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os,sys
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "1,0" #
import math
import torch
import logging
import numpy as np
from tqdm import tqdm
import torch.nn as nn
import multiprocessing
from os.path import join
from datetime import datetime
import torchvision.transforms as transforms
from torch.utils.data.dataloader import DataLoader
torch.backends.cudnn.benchmark= True # Provides a speedup
import util
import test
import parser
import commons
import datasets_ws
from model import network
from model.sync_batchnorm import convert_model
from model.functional import sare_ind, sare_joint
from model.Deit import deit_small_distilled_patch16_224, deit_base_distilled_patch16_384
from ptflops import get_model_complexity_info
def run_train():
#### Initial setup: parser, logging...
args = parser.parse_arguments()
start_time = datetime.now()
args.save_dir = join("logs", args.save_dir) # start_time.strftime('%Y-%m-%d_%H-%M-%S')
commons.setup_logging(args.save_dir)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {args.save_dir}")
logging.info(f"Using {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs")
#### Creation of Datasets
logging.debug(f"Loading dataset {args.dataset_name} from folder {args.datasets_folder}")
triplets_ds = datasets_ws.TripletsDataset(args, args.datasets_folder, args.dataset_name, "train", args.negs_num_per_query)
logging.info(f"Train query set: {triplets_ds}")
val_ds = datasets_ws.BaseDataset(args, args.datasets_folder, args.dataset_name, "val")
logging.info(f"Val set: {val_ds}")
test_ds = datasets_ws.BaseDataset(args, args.datasets_folder, args.dataset_name, "test")
logging.info(f"Test set: {test_ds}")
#### Initialize model
# model = network.GeoLocalizationNet(args)
args.features_dim = args.fc_output_dim
if args.backbone == 'deitBase':
model = deit_base_distilled_patch16_384(img_size=args.resize, num_classes=args.features_dim)
else:
model = deit_small_distilled_patch16_224(img_size=args.resize, num_classes=args.features_dim)
model = model.to(args.device)
if args.aggregation in ["netvlad", "crn"]: # If using NetVLAD layer, initialize it
if not args.resume:
triplets_ds.is_inference = True
model.aggregation.initialize_netvlad_layer(args, triplets_ds, model.backbone)
args.features_dim *= args.netvlad_clusters
model = torch.nn.DataParallel(model)
# =============================================================
for name, param in model.named_parameters():
if args.freeze and 'deit' in args.backbone:
if name.startswith('module.blocks') and int(name[14])<args.freeze:
param.requires_grad = False
# if not 'local_head' in name and not 'Reranker' in name:
# param.requires_grad = False
if param.requires_grad:
print(name)
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
# print(model.module.local_head.weight.requires_grad)
#### Setup Optimizer and Loss
if args.aggregation == "crn":
crn_params = list(model.module.aggregation.crn.parameters())
net_params = list(model.module.backbone.parameters()) + \
list([m[1] for m in model.module.aggregation.named_parameters() if not m[0].startswith('crn')])
if args.optim == "adam":
optimizer = torch.optim.Adam([{'params': crn_params, 'lr': args.lr_crn_layer},
{'params': net_params, 'lr': args.lr_crn_net}])
logging.info("You're using CRN with Adam, it is advised to use SGD")
elif args.optim == "sgd":
optimizer = torch.optim.SGD([{'params': crn_params, 'lr': args.lr_crn_layer, 'momentum': 0.9, 'weight_decay': 0.001},
{'params': net_params, 'lr': args.lr_crn_net, 'momentum': 0.9, 'weight_decay': 0.001}])
else:
if args.optim == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optim == 'adamw':
optimizer = torch.optim.AdamW(parameters, args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.03,
amsgrad=False)
elif args.optim == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.001)
if args.criterion == "triplet":
criterion_triplet = nn.TripletMarginLoss(margin=args.margin, p=2, reduction="sum")
elif args.criterion == "sare_ind":
criterion_triplet = sare_ind
elif args.criterion == "sare_joint":
criterion_triplet = sare_joint
#### Resume model, optimizer, and other training parameters
if args.resume:
if args.aggregation != 'crn':
model, optimizer, best_r1, start_epoch_num, not_improved_num = util.resume_train(args, model, optimizer)
else:
# CRN uses pretrained NetVLAD, then requires loading with strict=False and
# does not load the optimizer from the checkpoint file.
model, _, best_r1, start_epoch_num, not_improved_num = util.resume_train(args, model, strict=False)
logging.info(f"Resuming from epoch {start_epoch_num} with best recall@1 {best_r1:.1f}")
else:
best_r1 = start_epoch_num = not_improved_num = 0
# if args.backbone.startswith('vit'):
# logging.info(f"Output dimension of the model is {args.features_dim}, with {util.get_flops(model, args.resize)}")
# else:
# logging.info(f"Output dimension of the model is {args.features_dim}, with {util.get_flops(model, args.resize)}")
with torch.cuda.device(0):
macs, params = get_model_complexity_info(model.module, (3, args.resize[0], args.resize[1]), as_strings=False,
print_per_layer_stat=True, verbose=True)
logging.info(f"flops:{macs/1e9}, params: {params/1e6}")
if torch.cuda.device_count() >= 2:
# When using more than 1GPU, use sync_batchnorm for torch.nn.DataParallel
model = convert_model(model)
model = model.cuda()
#### Training loop
for epoch_num in range(start_epoch_num, args.epochs_num):
if args.optim == 'adamw':
adjust_learning_rate(optimizer, epoch_num, args)
logging.info(f"Start training epoch: {epoch_num:02d}")
epoch_start_time = datetime.now()
epoch_losses = np.zeros((0,1), dtype=np.float32)
# How many loops should an epoch last (default is 5000/1000=5)
loops_num = math.ceil(args.queries_per_epoch / args.cache_refresh_rate)
for loop_num in range(loops_num):
logging.debug(f"Cache: {loop_num} / {loops_num}")
# Compute triplets to use in the triplet loss
triplets_ds.is_inference = True
triplets_ds.compute_triplets(args, model)
triplets_ds.is_inference = False
triplets_dl = DataLoader(dataset=triplets_ds, num_workers=args.num_workers,
batch_size=args.train_batch_size,
collate_fn=datasets_ws.collate_fn,
pin_memory=(args.device=="cuda"),
drop_last=True)
model = model.train()
# images shape: (train_batch_size*12)*3*H*W ; by default train_batch_size=4, H=480, W=640
# triplets_local_indexes shape: (train_batch_size*10)*3 ; because 10 triplets per query
for images, triplets_local_indexes, _, utms in tqdm(triplets_dl, ncols=100):
# Flip all triplets or none
if args.horizontal_flip:
images = transforms.RandomHorizontalFlip()(images)
# Compute features of all images (images contains queries, positives and negatives)
features = model(images.to(args.device))
loss_triplet = 0
if args.criterion == "triplet":
triplets_local_indexes = torch.transpose(
triplets_local_indexes.view(args.train_batch_size, args.negs_num_per_query, 3), 1, 0)
for triplets in triplets_local_indexes:
queries_indexes, positives_indexes, negatives_indexes = triplets.T
loss_triplet += criterion_triplet(features[queries_indexes],
features[positives_indexes],
features[negatives_indexes])
elif args.criterion == 'sare_joint':
# sare_joint needs to receive all the negatives at once
triplet_index_batch = triplets_local_indexes.view(args.train_batch_size, 10, 3)
for batch_triplet_index in triplet_index_batch:
q = features[batch_triplet_index[0, 0]].unsqueeze(0) # obtain query as tensor of shape 1xn_features
p = features[batch_triplet_index[0, 1]].unsqueeze(0) # obtain positive as tensor of shape 1xn_features
n = features[batch_triplet_index[:, 2]] # obtain negatives as tensor of shape 10xn_features
loss_triplet += criterion_triplet(q, p, n)
elif args.criterion == "sare_ind":
for triplet in triplets_local_indexes:
# triplet is a 1-D tensor with the 3 scalars indexes of the triplet
q_i, p_i, n_i = triplet
loss_triplet += criterion_triplet(features[q_i:q_i+1], features[p_i:p_i+1], features[n_i:n_i+1])
del features
loss_triplet /= (args.train_batch_size * args.negs_num_per_query)
optimizer.zero_grad()
loss_triplet.backward()
optimizer.step()
# Keep track of all losses by appending them to epoch_losses
batch_loss = loss_triplet.item()
epoch_losses = np.append(epoch_losses, batch_loss)
del loss_triplet
logging.debug(f"Epoch[{epoch_num:02d}]({loop_num}/{loops_num}): " +
f"current batch triplet loss = {batch_loss:.4f}, " +
f"average epoch triplet loss = {epoch_losses.mean():.4f}")
logging.info(f"Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "
f"average epoch triplet loss = {epoch_losses.mean():.4f}")
# Compute recalls on validation set
recalls, recalls_str = test.test(args, val_ds, model)
logging.info(f"Recalls on val set {val_ds}: {recalls_str}")
is_best = recalls[0] > best_r1
# Save checkpoint, which contains all training parameters
util.save_checkpoint(args, {"epoch_num": epoch_num, "model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(), "recalls": recalls, "best_r5": best_r1,
"not_improved_num": not_improved_num
}, is_best, filename="last_model.pth")
# If recall@5 did not improve for "many" epochs, stop training
if is_best:
logging.info(f"Improved: previous best R@1 = {best_r1:.1f}, current R@1 = {recalls[0]:.1f}")
best_r1 = recalls[0]
not_improved_num = 0
else:
not_improved_num += 1
logging.info(f"Not improved: {not_improved_num} / {args.patience}: best R@1 = {best_r1:.1f}, current R@1 = {recalls[0]:.1f}")
if not_improved_num >= args.patience:
logging.info(f"Performance did not improve for {not_improved_num} epochs. Stop training.")
break
logging.info(f"Best R@1: {best_r1:.1f}")
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
#### Test best model on test set
best_model_state_dict = torch.load(join(args.save_dir, "best_model.pth"))["model_state_dict"]
model.load_state_dict(best_model_state_dict)
recalls, recalls_str = test.test(args, test_ds, model, test_method=args.test_method)
logging.info(f"Recalls on {test_ds}: {recalls_str}")
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
if epoch < args.warmup:
alpha = epoch / args.warmup
warmup_factor = 0.1 * (1.0 - alpha) + alpha
lr *= warmup_factor
else:
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs_num))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('current lr:', lr)
if __name__=='__main__':
run_train()