forked from sumyeon/python_analytics_atoz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_utils.py
217 lines (160 loc) · 6.31 KB
/
local_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# pylint: disable=invalid-name, redefined-outer-name, missing-docstring, non-parent-init-called, trailing-whitespace, line-too-long
import cv2
import numpy as np
class Label:
def __init__(self, cl=-1, tl=np.array([0., 0.]), br=np.array([0., 0.]), prob=None):
self.__tl = tl
self.__br = br
self.__cl = cl
self.__prob = prob
def __str__(self):
return 'Class: %d, top left(x: %f, y: %f), bottom right(x: %f, y: %f)' % (
self.__cl, self.__tl[0], self.__tl[1], self.__br[0], self.__br[1])
def copy(self):
return Label(self.__cl, self.__tl, self.__br)
def wh(self): return self.__br - self.__tl
def cc(self): return self.__tl + self.wh() / 2
def tl(self): return self.__tl
def br(self): return self.__br
def tr(self): return np.array([self.__br[0], self.__tl[1]])
def bl(self): return np.array([self.__tl[0], self.__br[1]])
def cl(self): return self.__cl
def area(self): return np.prod(self.wh())
def prob(self): return self.__prob
def set_class(self, cl):
self.__cl = cl
def set_tl(self, tl):
self.__tl = tl
def set_br(self, br):
self.__br = br
def set_wh(self, wh):
cc = self.cc()
self.__tl = cc - .5 * wh
self.__br = cc + .5 * wh
def set_prob(self, prob):
self.__prob = prob
class DLabel(Label):
def __init__(self, cl, pts, prob):
self.pts = pts
tl = np.amin(pts, axis=1)
br = np.amax(pts, axis=1)
Label.__init__(self, cl, tl, br, prob)
def getWH(shape):
return np.array(shape[1::-1]).astype(float)
def IOU(tl1, br1, tl2, br2):
wh1, wh2 = br1-tl1, br2-tl2
assert((wh1 >= 0).all() and (wh2 >= 0).all())
intersection_wh = np.maximum(np.minimum(br1, br2) - np.maximum(tl1, tl2), 0)
intersection_area = np.prod(intersection_wh)
area1, area2 = (np.prod(wh1), np.prod(wh2))
union_area = area1 + area2 - intersection_area
return intersection_area/union_area
def IOU_labels(l1, l2):
return IOU(l1.tl(), l1.br(), l2.tl(), l2.br())
def nms(Labels, iou_threshold=0.5):
SelectedLabels = []
Labels.sort(key=lambda l: l.prob(), reverse=True)
for label in Labels:
non_overlap = True
for sel_label in SelectedLabels:
if IOU_labels(label, sel_label) > iou_threshold:
non_overlap = False
break
if non_overlap:
SelectedLabels.append(label)
return SelectedLabels
def find_T_matrix(pts, t_pts):
A = np.zeros((8, 9))
for i in range(0, 4):
xi = pts[:, i]
xil = t_pts[:, i]
xi = xi.T
A[i*2, 3:6] = -xil[2]*xi
A[i*2, 6:] = xil[1]*xi
A[i*2+1, :3] = xil[2]*xi
A[i*2+1, 6:] = -xil[0]*xi
[U, S, V] = np.linalg.svd(A)
H = V[-1, :].reshape((3, 3))
return H
def getRectPts(tlx, tly, brx, bry):
return np.matrix([[tlx, brx, brx, tlx], [tly, tly, bry, bry], [1, 1, 1, 1]], dtype=float)
def normal(pts, side, mn, MN):
pts_MN_center_mn = pts * side
pts_MN = pts_MN_center_mn + mn.reshape((2, 1))
pts_prop = pts_MN / MN.reshape((2, 1))
return pts_prop
# Reconstruction function from predict value into plate crpoped from image
def reconstruct(I, Iresized, Yr, lp_threshold):
# 4 max-pooling layers, stride = 2
net_stride = 2**4
side = ((208 + 40)/2)/net_stride
# one line and two lines license plate size
one_line = (470, 110)
two_lines = (280, 200)
Probs = Yr[..., 0]
Affines = Yr[..., 2:]
xx, yy = np.where(Probs > lp_threshold)
# CNN input image size
WH = getWH(Iresized.shape)
# output feature map size
MN = WH/net_stride
vxx = vyy = 0.5 #alpha
base = lambda vx, vy: np.matrix([[-vx, -vy, 1], [vx, -vy, 1], [vx, vy, 1], [-vx, vy, 1]]).T
labels = []
labels_frontal = []
for i in range(len(xx)):
x, y = xx[i], yy[i]
affine = Affines[x, y]
prob = Probs[x, y]
mn = np.array([float(y) + 0.5, float(x) + 0.5])
# affine transformation matrix
A = np.reshape(affine, (2, 3))
A[0, 0] = max(A[0, 0], 0)
A[1, 1] = max(A[1, 1], 0)
# identity transformation
B = np.zeros((2, 3))
B[0, 0] = max(A[0, 0], 0)
B[1, 1] = max(A[1, 1], 0)
pts = np.array(A*base(vxx, vyy))
pts_frontal = np.array(B*base(vxx, vyy))
pts_prop = normal(pts, side, mn, MN)
frontal = normal(pts_frontal, side, mn, MN)
labels.append(DLabel(0, pts_prop, prob))
labels_frontal.append(DLabel(0, frontal, prob))
final_labels = nms(labels, 0.1)
final_labels_frontal = nms(labels_frontal, 0.1)
#print(final_labels_frontal)
assert final_labels_frontal, "No License plate is founded!"
# LP size and type
out_size, lp_type = (two_lines, 2) if ((final_labels_frontal[0].wh()[0] / final_labels_frontal[0].wh()[1]) < 1.7) else (one_line, 1)
TLp = []
Cor = []
if len(final_labels):
final_labels.sort(key=lambda x: x.prob(), reverse=True)
for _, label in enumerate(final_labels):
t_ptsh = getRectPts(0, 0, out_size[0], out_size[1])
ptsh = np.concatenate((label.pts * getWH(I.shape).reshape((2, 1)), np.ones((1, 4))))
H = find_T_matrix(ptsh, t_ptsh)
Ilp = cv2.warpPerspective(I, H, out_size, borderValue=0)
TLp.append(Ilp)
Cor.append(ptsh)
return final_labels, TLp, lp_type, Cor
def detect_lp(model, I, max_dim, lp_threshold):
# 이미지 X*Y 중에 작은 쪽 사이즈
min_dim_img = min(I.shape[:2])
# 608 기준선과 작은쪽 사이즈와의 비율
factor = float(max_dim) / min_dim_img
# 작은쪽 (주로 height)이 608이 되도록 w, h 계산
w, h = (np.array(I.shape[1::-1], dtype=float) * factor).astype(int).tolist()
# height가 608이 되도록 그림 rescale
Iresized = cv2.resize(I, (w, h))
# 작업을 위해 copy본 작성
T = Iresized.copy()
# model 입력에 맞게 reshape
T = T.reshape((1, T.shape[0], T.shape[1], T.shape[2]))
# model을 통해 번호판 있을 곳을 추정
Yr = model.predict(T)
Yr = np.squeeze(Yr)
# 추정된 내용을 바탕으로 번호판을 추출
L, TLp, lp_type, Cor = reconstruct(I, Iresized, Yr, lp_threshold)
return L, TLp, lp_type, Cor