-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathutils.py
145 lines (114 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import print_function
import os
import math
import json
import logging
import numpy as np
from PIL import Image
from datetime import datetime
import imageio
from glob import glob
import shutil
def prepare_dirs_and_logger(config):
# print(__file__)
os.chdir(os.path.dirname(__file__))
formatter = logging.Formatter("%(asctime)s:%(levelname)s::%(message)s")
logger = logging.getLogger()
for hdlr in logger.handlers:
logger.removeHandler(hdlr)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
# data path
config.data_path = os.path.join(config.data_dir, config.dataset)
# model path
if config.is_train:
model_name = os.path.join(config.archi, '{}_{}_{}'.format(
config.dataset, get_time(), config.tag))
config.model_dir = os.path.join(config.log_dir, model_name)
else:
model_name = os.path.join('vec', '{}_{}_{}'.format(
config.dataset, get_time(), config.tag))
config.model_dir = os.path.join(config.log_dir, model_name)
if not os.path.exists(config.model_dir):
os.makedirs(config.model_dir)
def get_time():
return datetime.now().strftime("%m%d_%H%M%S")
def save_config(config):
param_path = os.path.join(config.model_dir, "params.json")
print("[*] MODEL dir: %s" % config.model_dir)
print("[*] PARAM path: %s" % param_path)
with open(param_path, 'w') as fp:
json.dump(config.__dict__, fp, indent=4, sort_keys=True)
def rank(array):
return len(array.shape)
def make_grid(tensor, nrow=8, padding=2,
normalize=False, scale_each=False):
"""Code based on https://github.com/pytorch/vision/blob/master/torchvision/utils.py"""
nmaps = tensor.shape[0]
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.shape[1] + padding), int(tensor.shape[2] + padding)
grid = np.ones([height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2, 3], dtype=np.uint8)*255
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
h, h_width = y * height + 1 + padding // 2, height - padding
w, w_width = x * width + 1 + padding // 2, width - padding
grid[h:h+h_width, w:w+w_width] = tensor[k]
k = k + 1
return grid
def save_image(tensor, filename, nrow=8, padding=2,
normalize=False, scale_each=False, single=False):
if not single:
ndarr = make_grid(tensor, nrow=nrow, padding=padding,
normalize=normalize, scale_each=scale_each)
else:
h, w = tensor.shape[0], tensor.shape[1]
ndarr = np.zeros([h,w,3], dtype=np.uint8)
ndarr[:,:] = tensor[:,:]
im = Image.fromarray(ndarr)
im.save(filename)
def convert_png2mp4(imgdir, filename, fps, delete_imgdir=False):
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname)
try:
writer = imageio.get_writer(filename, fps=fps)
except Exception:
imageio.plugins.ffmpeg.download()
writer = imageio.get_writer(filename, fps=fps)
imgs = sorted(glob("{}/*.png".format(imgdir)))
# print(imgs)
for img in imgs:
im = imageio.imread(img)
writer.append_data(im)
writer.close()
if delete_imgdir: shutil.rmtree(imgdir)
def rf(o, k, stride): # input size from output size
return (o-1)*stride + k
def receptive_field_size(c, k, s):
if c == 0:
return rf(rf(1, k, 1), k, 1)
else:
rfs = receptive_field_size(c-1, k, s)
print('%d: %d' % (c-1, rfs))
return rf(rfs, k, s)
if __name__ == '__main__':
c, k, s = 4, 3, 2
rfs = receptive_field_size(c, k, s)
print('c{}k{}s{} receptive field size'.format(c, k, s), rfs)
c, k = 3, 3
rfs = receptive_field_size(c, k, s)
print('c{}k{}s{} receptive field size'.format(c, k, s), rfs)
c, k = 5, 3
rfs = receptive_field_size(c, k, s)
print('c{}k{}s{} receptive field size'.format(c, k, s), rfs)
c, k = 4, 4
rfs = receptive_field_size(c, k, s)
print('c{}k{}s{} receptive field size'.format(c, k, s), rfs)
c, k = 3, 4
rfs = receptive_field_size(c, k, s)
print('c{}k{}s{} receptive field size'.format(c, k, s), rfs)