-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpreprocess.py
160 lines (130 loc) · 5.05 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import cv2
import numpy as np
#import cPickle as pickle
import h5py
import random
#PIC_PATH='/home/zcb/datasets/trainSet/Stimuli/Alldata/'
#SALMAP_PATH='/home/zcb/datasets/trainSet/FIXATIONMAPS/Alldata/'
#PIC_PATH='/home/cx/keras_saliency/datasets/ecssd/images/0/'
#SALMAP_PATH='/home/cx/keras_saliency/datasets/ecssd/ground_truth_mask/0/'
#SALCON 10k eye fix
#PIC_PATH = '/home/zcb/datasets/SALCON/images/train_image/train_images/'
#SALMAP_PATH = '/home/zcb/datasets/SALCON/train/train_masks/'
PIC_PATH = '/home/czhu/Desktop/PDNet/PDNet/Img/'
SALMAP_PATH = '/home/czhu/Desktop/PDNet/PDNet/Img/'
VAL_PATH = '/home/cx/keras_saliency/datasets/DUTS-TE/DUTS-TE-Image/'
VALMASK_PATH = '/home/cx/keras_saliency/datasets/DUTS-TE/DUTS-TE-Mask/'
PIC_PATH2 = '/home/cx/keras_saliency/datasets/MSRA10K_Imgs_GT/Imgs/'
SALMAP_PATH2 = '/home/cx/keras_saliency/datasets/MSRA10K_Imgs_GT/Masks/'
#SALMAP_PATH = '/home/zcb/datasets/MSRA10K_Imgs_GT/saliencymap/'
datalist = open(PIC_PATH+'list.txt','r')
namelist=[l.strip('\n') for l in datalist.readlines()]
sallist = open(SALMAP_PATH+'list.txt','r')
sallist=[l.strip('\n') for l in sallist.readlines()]
datalist2 = open(PIC_PATH2+'list.txt','r')
namelist2=[l.strip('\n') for l in datalist2.readlines()]
sallist2 = open(SALMAP_PATH2+'list.txt','r')
sallist2=[l.strip('\n') for l in sallist2.readlines()]
val_datalist = open(VAL_PATH+'list.txt','r')
val_namelist=[l.strip('\n') for l in val_datalist.readlines()]
val_sallist = open(VALMASK_PATH+'list.txt','r')
val_sallist=[l.strip('\n') for l in val_sallist.readlines()]
input_h=224
input_w=224
output_h=224
output_w=224
NumSample=len(namelist)
NumSample2=len(namelist2)
val_num = len(val_namelist)
X1 = np.zeros((NumSample+NumSample2,input_h, input_w,3), dtype='float32')
Y1 = np.zeros((NumSample+NumSample2,output_h,output_w,1), dtype='uint8')
#Y1 = np.zeros((NumSample,output_h,output_w,1), dtype='float32')
NumAll = NumSample+NumSample2
print NumAll
print val_num
val_num = 2500
VAL_X = np.zeros((val_num,input_h, input_w,3), dtype='float32')
VAL_Y = np.zeros((val_num,output_h,output_w,1), dtype='uint8')
for i in range(val_num):
img = cv2.imread(VAL_PATH+val_namelist[i], cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#print img.shape
img = cv2.resize(img,(input_w,input_h),interpolation=cv2.INTER_CUBIC)
img=img.astype(np.float32)/255.
VAL_X[i]=img
label = cv2.imread(VALMASK_PATH+val_sallist[i],cv2.IMREAD_GRAYSCALE)
label = cv2.resize(label,(output_w,output_h),interpolation=cv2.INTER_CUBIC)
label = label.astype(np.float32)
label /=255
label[label > 0.5]=1
label[label <=0.5]=0
label=label.astype(np.uint8)
VAL_Y[i]=label.reshape(output_h,output_w,1)
for i in range(NumSample):
#name1 = namelist[i][0:namelist[i].index('.')]
# name2 = sallist[i][0:sallist[i].index('_')]
# if name1 != name2:
# print error
img = cv2.imread(PIC_PATH+namelist[i], cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#print img.shape
img = cv2.resize(img,(input_w,input_h),interpolation=cv2.INTER_CUBIC)
#print img.shape
#cv2.imshow('show',img)
img=img.astype(np.float32)/255.
#img = img /255.
#img -= 1.
if(cmp(img.shape , (input_h,input_w,3)) == 0):
#img = img.transpose(2,0,1).reshape(3, input_h, input_w)
X1[i]=img
else:
print 'error'
#np.set_printoptions(threshold='nan')
label = cv2.imread(SALMAP_PATH+sallist[i],cv2.IMREAD_GRAYSCALE)
#label = loadSaliencyMapSUN(names[i])
label = cv2.resize(label,(output_w,output_h),interpolation=cv2.INTER_CUBIC)
#cv2.imshow('label',label)
#cv2.waitKey(0)
label = label.astype(np.float32)
label /=255
label[label > 0.5]=1
label[label <=0.5]=0
label=label.astype(np.uint8)
# print 'data',X1[i]
# print 'label',label
#Y1.append(label.reshape(1,48*48))
Y1[i]=label.reshape(output_h,output_w,1)
for i in range(NumSample2):
img = cv2.imread(PIC_PATH2+namelist2[i], cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#print img.shape
img = cv2.resize(img,(input_w,input_h),interpolation=cv2.INTER_CUBIC)
img=img.astype(np.float32)/255.
X1[i+NumSample]=img
label = cv2.imread(SALMAP_PATH2+sallist2[i],cv2.IMREAD_GRAYSCALE)
label = cv2.resize(label,(output_w,output_h),interpolation=cv2.INTER_CUBIC)
label = label.astype(np.float32)
label /=255
label[label > 0.5]=1
label[label <=0.5]=0
label=label.astype(np.uint8)
Y1[i+NumSample]=label.reshape(output_h,output_w,1)
#random.seed(1)
#rand=range(NumAll)
#random.shuffle(rand)
#
#split_at = int(NumAll * 0.88)
#x , y = X1[rand[0:split_at]],Y1[rand[0:split_at]]
#val_x ,val_y = X1[rand[split_at:]],Y1[rand[split_at:]]
#f = h5py.File('data_ecssd_96x96_T.h5','w')
f = h5py.File('data_merge_224x224x2_T.h5','w')
#f = h5py.File('data_msra_192x192x2_T.h5','w')
f['x'] = X1
f['y'] = Y1
f['val_x'] = VAL_X
f['val_y'] = VAL_Y
f.close()
#data_to_save = (X1, Y1)
#f = file('data_msra_200x150_T.cPickle', 'wb')
#pickle.dump(data_to_save, f, protocol=pickle.HIGHEST_PROTOCOL)
#f.close()