-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathModel.py
138 lines (112 loc) · 4.05 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from model_utils import *
import pdb
import os
import torch.nn.functional as F
# Channel Attention
class CALayer(nn.Module):
def __init__(self, channel, reduction=8):
super(CALayer, self).__init__()
# feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
nn.Sigmoid()
)
self.bn = nn.BatchNorm1d(4096)
def forward(self, x):
y = self.conv_du(x)
y = x * y + x
y = y.view(y.shape[0], -1)
y = self.bn(y)
return y
# Grad Reversal
class GradReverse(torch.autograd.Function):
def __init__(self, lambd):
self.lambd = lambd
def forward(self, x):
return x.view_as(x)
def backward(self, grad_output):
return (grad_output * -self.lambd)
def grad_reverse(x, lambd=1.0):
return GradReverse(lambd)(x)
# Generator
class Pointnet_g(nn.Module):
def __init__(self):
super(Pointnet_g, self).__init__()
self.trans_net1 = transform_net(3, 3)
self.trans_net2 = transform_net(64, 64)
self.conv1 = conv_2d(3, 64, 1)
self.conv2 = conv_2d(64, 64, 1)
# SA Node Module
self.conv3 = adapt_layer_off() # (64->128)
self.conv4 = conv_2d(128, 128, 1)
self.conv5 = conv_2d(128, 1024, 1)
self.bn1 = nn.BatchNorm1d(1024)
def forward(self, x, node = False):
x_loc = x.squeeze(-1)
transform = self.trans_net1(x)
x = x.transpose(2, 1)
x = x.squeeze(-1)
x = torch.bmm(x, transform)
x = x.unsqueeze(3)
x = x.transpose(2, 1)
x = self.conv1(x)
x = self.conv2(x)
transform = self.trans_net2(x)
x = x.transpose(2, 1)
x = x.squeeze(-1)
x = torch.bmm(x, transform)
x = x.unsqueeze(3)
x = x.transpose(2, 1)
x, node_fea, node_off = self.conv3(x, x_loc) # x = [B, dim, num_node, 1]/[64, 64, 1024, 1]; x_loc = [B, xyz, num_node] / [64, 3, 1024]
x = self.conv4(x)
x = self.conv5(x)
x, _ = torch.max(x, dim=2, keepdim=False)
x = x.squeeze(-1)
x = self.bn1(x)
if node == True:
return x, node_fea, node_off
else:
return x, node_fea
# Classifier
class Pointnet_c(nn.Module):
def __init__(self, num_class=10):
super(Pointnet_c, self).__init__()
self.fc = nn.Linear(1024, num_class)
def forward(self, x):
x = self.fc(x)
return x
class Net_MDA(nn.Module):
def __init__(self, model_name='Pointnet'):
super(Net_MDA, self).__init__()
if model_name == 'Pointnet':
self.g = Pointnet_g()
self.attention_s = CALayer(64*64)
self.attention_t = CALayer(64*64)
self.c1 = Pointnet_c()
self.c2 = Pointnet_c()
def forward(self, x, constant=1, adaptation=False, node_vis=False, mid_feat=False, node_adaptation_s=False, node_adaptation_t=False):
x, feat_ori, node_idx = self.g(x, node=True)
batch_size = feat_ori.size(0)
# sa node visualization
if node_vis ==True:
return node_idx
# collect mid-level feat
if mid_feat == True:
return x, feat_ori
if node_adaptation_s == True:
# source domain sa node feat
feat_node = feat_ori.view(batch_size, -1)
feat_node_s = self.attention_s(feat_node.unsqueeze(2).unsqueeze(3))
return feat_node_s
elif node_adaptation_t == True:
# target domain sa node feat
feat_node = feat_ori.view(batch_size, -1)
feat_node_t = self.attention_t(feat_node.unsqueeze(2).unsqueeze(3))
return feat_node_t
if adaptation == True:
x = grad_reverse(x, constant)
y1 = self.c1(x)
y2 = self.c2(x)
return y1, y2