-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathpoint_utils.py
180 lines (164 loc) · 6.51 KB
/
point_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn as nn
def farthest_point_sample(xyz, npoint):
"""
Input:
xyz: pointcloud data, [B, C, N]
npoint: number of samples
Return:
centroids: sampled pointcloud index, [B, npoint]
"""
device = xyz.device
B, C, N = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, :, farthest].view(B, 3, 1)
dist = torch.sum((xyz - centroid) ** 2, 1)
mask = dist < distance
distance[mask] = dist[mask]
farthest = torch.max(distance, -1)[1]
return centroids
def index_points(points, idx):
"""
Input:
points: input points data, [B, C, N]/[B,C,N,1]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, C, S]
"""
if len(points.shape) == 4:
points = points.squeeze()
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
points = points.permute(0,2,1) #(B,N,C)
new_points = points[batch_indices, idx, :]
if len(new_points.shape)==3:
new_points = new_points.permute(0,2,1)
elif len(new_points.shape) == 4:
new_points = new_points.permute(0,3,1,2)
return new_points
def query_ball_point(radius, nsample, xyz, new_xyz):
"""
Input:
radius: local region radius
nsample: max sample number in local region
xyz: all points, [B, C, N]
new_xyz: query points, [B, C, S]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
device = xyz.device
B, C, N = xyz.shape
_, _, S = new_xyz.shape
sqrdists = square_distance(new_xyz, xyz)
if radius is not None:
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
group_idx[sqrdists > radius ** 2] = N
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
mask = group_idx == N
group_idx[mask] = group_first[mask]
else:
group_idx = torch.sort(sqrdists, dim=-1)[1][:,:,:nsample]
return group_idx
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, C, N]
dst: target points, [B, C, M]
Output:
dist: per-point square distance, [B, N, M]
"""
B, _, N = src.shape
_, _, M = dst.shape
dist = -2 * torch.matmul(src.permute(0, 2, 1), dst)
dist += torch.sum(src ** 2, 1).view(B, N, 1)
dist += torch.sum(dst ** 2, 1).view(B, 1, M)
return dist
def upsample_inter(xyz1, xyz2, points1, points2, k):
"""
Input:
xyz1: input points position data, [B, C, N]
xyz2: sampled input points position data, [B, C, S]
points1: input points data, [B, D, N]/[B,D,N,1]
points2: input points data, [B, D, S]/[B,D,S,1]
k:
Return:
new_points: upsampled points data, [B, D+D, N]
"""
if points1 is not None:
if len(points1.shape) == 4:
points1 = points1.squeeze()
if len(points2.shape) == 4:
points2 = points2.squeeze()
B, C, N = xyz1.size()
_, _, S = xyz2.size()
dists = square_distance(xyz1, xyz2) #(B, N, S)
dists, idx = dists.sort(dim=-1)
dists, idx = dists[:, :, :k], idx[:, :, :k] # [B, N, 3]
dists[dists < 1e-10] = 1e-10
weight = 1.0 / dists # [B, N, 3]
weight = weight / torch.sum(weight, dim=-1).view(B, N, 1) # [B, N, 3]; weight = [64, 1024, 3]
interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, 1, N, k), dim=3) #(B,D,N); idx = [64, 1024, 3]; points2 = [64, 64, 64];
if points1 is not None:
new_points = torch.cat([points1, interpolated_points], dim=1) # points1 = [64, 64, 1024];
return new_points
else:
return interpolated_points
def pairwise_distance(x):
batch_size = x.size(0)
point_cloud = torch.squeeze(x)
if batch_size == 1:
point_cloud = torch.unsqueeze(point_cloud, 0)
point_cloud_transpose = torch.transpose(point_cloud, dim0=1, dim1=2)
point_cloud_inner = torch.matmul(point_cloud_transpose, point_cloud)
point_cloud_inner = -2 * point_cloud_inner
point_cloud_square = torch.sum(point_cloud ** 2, dim=1, keepdim=True)
point_cloud_square_transpose = torch.transpose(point_cloud_square, dim0=1, dim1=2)
return point_cloud_square + point_cloud_inner + point_cloud_square_transpose
def gather_neighbor(x, nn_idx, n_neighbor):
x = torch.squeeze(x)
batch_size = x.size()[0]
num_dim = x.size()[1]
num_point = x.size()[2]
point_expand = x.unsqueeze(2).expand(batch_size, num_dim, num_point, num_point)
nn_idx_expand = nn_idx.unsqueeze(1).expand(batch_size, num_dim, num_point, n_neighbor)
pc_n = torch.gather(point_expand, -1, nn_idx_expand)
return pc_n
def get_neighbor_feature(x, n_point, n_neighbor):
if len(x.size()) == 3:
x = x.unsqueeze()
adj_matrix = pairwise_distance(x)
_, nn_idx = torch.topk(adj_matrix, n_neighbor, dim=2, largest=False)
nn_idx = nn_idx[:, :n_point, :]
batch_size = x.size()[0]
num_dim = x.size()[1]
num_point = x.size()[2]
point_expand = x[:, :, :n_point, :].expand(-1, -1, -1, num_point)
nn_idx_expand = nn_idx.unsqueeze(1).expand(batch_size, num_dim, n_point, n_neighbor)
pc_n = torch.gather(point_expand, -1, nn_idx_expand)
return pc_n
def get_edge_feature(x, n_neighbor):
if len(x.size()) == 3:
x = x.unsqueeze(3)
adj_matrix = pairwise_distance(x)
_, nn_idx = torch.topk(adj_matrix, n_neighbor, dim=2, largest=False)
point_cloud_neighbors = gather_neighbor(x, nn_idx, n_neighbor)
point_cloud_center = x.expand(-1, -1, -1, n_neighbor)
edge_feature = torch.cat((point_cloud_center, point_cloud_neighbors-point_cloud_center), dim=1)
return edge_feature