-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircle.m
108 lines (75 loc) · 2.83 KB
/
circle.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
classdef circle
properties
loc % center of the obstacle
rad % radiuous of the obstacle
N % level of discretization (the total number of point on the bump is 2*N)
s
w
dw
x
dx
d2x
d3x
Np
win
normals
tau
name
end
methods
%--------------------------------------------------------------------------------------------%
function obj = cctor(obj,N,loc,rad)
obj.N = N;
obj.Np = 2*N;
obj.loc = loc;
obj.rad = rad;
obj.s = pi/N*(0:1:2*N-1)';
obj.w = obj.s;
obj.dw = ones(size(obj.s));
Nt = 2*N;
obj.x = zeros(Nt,2);
obj.dx = zeros(Nt,2);
obj.d2x = zeros(Nt,2);
obj.d3x = zeros(Nt,2);
obj.normals = zeros(Nt,2);
obj.tau = zeros(Nt,1);
obj.win = ones(Nt,1);
for i=1:Nt
[obj.x(i,:),obj.dx(i,:),obj.d2x(i,:),obj.d3x(i,:)] = obj.param(obj.s(i));
obj.tau(i) = norm(obj.dx(i,:));
obj.normals(i,:) = [obj.dx(i,2) -obj.dx(i,1)]/obj.tau(i);
end
obj.name = 'circle';
end
%--------------------------------------------------------------------------------------------%
function [x, dx,d2x,d3x] = param(obj,t)
% Original parametrization of the curve between 0:2*pi
%circle
x = obj.loc+obj.rad*[cos(t) sin(t)];
dx = obj.rad*[-sin(t) cos(t)];
d2x = -obj.rad*[cos(t) sin(t)];
d3x = -obj.rad*[-sin(t) cos(t)];
end
%-------------------------------------------------------------------------%
function [dist,xc,tc,rel_pos] = dist(obj,x)
% Position of the point x with respect to the curve is
% defined as follows:
%
% x
% Obove <------< : rel_pos = 1
%
%
% Below <------< : rel_pos = -1
% x
options = optimset ('TolX',1.0e-5);
f = @(t) norm(obj.param(t)-x);
[tc,dist] = fminbnd(f,0,2*pi,options);
[xc,dxc] = obj.param(tc);
dxc = [dxc 0];
d = [x-xc 0];
A = cross(d,dxc);
rel_pos = sign(A(3));
end
%-------------------------------------------------------------------------%
end
end