-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
241 lines (187 loc) · 7.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import csv
import importlib
import json
import os
import subprocess
import sys
import math
import numpy as np
from config import model_groups
def normalize(coord):
return Vector(
coord.x/coord.length(),
coord.y/coord.length()
)
def perpendicular(coord):
# Shifts the angle by pi/2 and calculate the coordinates
# using the original vector length
return Vector(
coord.length()*math.cos(coord.angle()+math.pi/2),
coord.length()*math.sin(coord.angle()+math.pi/2)
)
class Vector:
def __init__(self, x, y):
self.x = x
self.y = y
def __sub__(self, other):
return Vector(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Vector(self.x + other.x, self.y + other.y)
def dot(self, other):
return self.x * other.x + self.y * other.y
def length(self):
# Returns the length of the vector
return math.sqrt(self.x**2 + self.y**2)
def angle(self):
# Returns the vector's angle
return math.atan2(self.y, self.x)
def norm(self):
return self.dot(self)**0.5
def normalized(self):
norm = self.norm()
return Vector(self.x / norm, self.y / norm)
def perp(self):
return Vector(1, -self.x / self.y)
def __mul__(self, scalar):
return Vector(self.x * scalar, self.y * scalar)
def __str__(self):
return f'({self.x}, {self.y})'
def map_number(n, start1, stop1, start2, stop2):
return ((n - start1) / (stop1 - start1)) * (stop2 - start2) + start2
# n = max(start1, min(stop1, n))
# n = ((n - start1) / (stop1 - start1)) * (stop2 - start2) + start2
# return n
def create_save_folder(save_folder, sub_folder):
found = False
sub_backup = sub_folder
sf = f"{save_folder}/{sub_folder}"
i = 1
while not found:
if os.path.exists(sf):
i += 1
sub_folder = sub_backup + "_v" + str(i)
sf = f"{save_folder}/{sub_folder}"
else:
found = True
os.makedirs(sf)
return save_folder, sub_folder
def save_gen_best(save_folder, sub_folder, experiment_name, data):
with open(f"{save_folder}/{sub_folder}/{experiment_name}_gens_bests.txt", "a") as text_file:
if data[0] == 0:
print(f"gen ind fit height", file=text_file)
genotype = '[' + ','.join(map(lambda x: str(x), np.array(data[1]))) + ']'
print(f"{data[0]} {genotype} {data[2]} {data[3]}", file=text_file)
with open(f"{save_folder}/{sub_folder}/{experiment_name}_gens_bests.csv", "a") as csv_file:
csv_file = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
if data[0] == 0:
csv_file.writerow(['gen', 'ind', 'fit', 'height'])
csv_file.writerow([data[0], genotype, data[2], data[3]])
def unpack_models_string(models_string):
# a messy way to do substiution of aliases. whatever.
cur_models_string = ""
next_models_string = models_string
while cur_models_string != next_models_string:
cur_models_string = next_models_string
if not next_models_string.endswith(","):
next_models_string = next_models_string + ","
for key in model_groups:
next_models_string = next_models_string.replace(key, model_groups[key])
# print("how about ", cur_models_string, "becoming", next_models_string)
return cur_models_string
def unpack_requested_networks(networks):
networks = unpack_models_string(networks)
requested_networks = networks.split(",")
# remove empty strings
requested_networks = [x for x in requested_networks if x]
# remove duplicates and sort
requested_networks = sorted(list(dict.fromkeys(requested_networks)))
return requested_networks
def get_model_from_name(k):
model = load_scoring_object(k)
return model
def get_active_models_from_arg(networks):
requested_networks = unpack_requested_networks(networks)
print("Requested networks: ", requested_networks)
active_models = {}
for k in requested_networks:
if not k.startswith("standard"):
print("Setting up {}".format(k))
active_models[k] = get_model_from_name(k)
if len(active_models) == 0:
print("_____ WARNING: no active models ______")
return active_models
def helpful_interface_message_exit(model_interface, e):
print("==> Failed to load supporting class {}".format(model_interface))
print("==> Check that package {} is installed".format(model_interface.split(".")[0]))
print("(exception was: {})".format(e))
sys.exit(1)
def load_scoring_object(network_name):
model_class_name = "Scoring"
model_module_name = network_name
# print("Loading {} class from {}".format(model_class_name, model_module_name))
try:
scoring_class = getattr(importlib.import_module(model_module_name), model_class_name)
except ImportError:
try:
# fallback: try loading from "scoring" subdirectory of library path (todo: default/enforce?)
# print("isto é meu "+model_module_name)
scoring_class = getattr(importlib.import_module("score." + model_module_name), model_class_name)
except ImportError as e:
helpful_interface_message_exit(model_module_name, e)
# print("class loaded.")
scoring_object = scoring_class()
return scoring_object
# utilities for mapping imagenet names <-> indexes
def sanatize_label(label):
label = label.lower()
label = label.replace("'", "")
label = label.replace(" ", "_")
return label
def open_class_mapping(filename="imagenet_class_index.json"):
class_file = os.path.expanduser(filename)
with open(class_file) as json_data:
mapping = json.load(json_data)
clean_mapping = {}
for k in mapping:
v = mapping[k]
clean_key = int(k)
clean_mapping[clean_key] = [sanatize_label(v[0]), sanatize_label(v[1])]
return clean_mapping
def get_map_record_from_key(mapping, key):
if isinstance(key, int):
map_index = key
elif key.isdigit():
map_index = int(key)
else:
map_index = None
clean_label = sanatize_label(key)
# first try mapping the label to an index
for k in mapping:
if mapping[k][1] == clean_label and map_index is None:
map_index = k
if map_index is None:
# backup try mapping the label to a fullname
for k in mapping:
if mapping[k][2] == clean_label and map_index is None:
map_index = k
if map_index is None:
print("class mapping for {} not found", key)
return None
return [map_index, mapping[map_index][0], mapping[map_index][1]]
def get_class_index(mapping, key):
map_record = get_map_record_from_key(mapping, key)
if map_record is None:
return None
return map_record[0]
def get_class_index_list(mapping, keys):
key_list = keys.split(",")
index_list = [get_class_index(mapping, k) for k in key_list]
return index_list
# downloader
def wget_file(url, out):
try:
print(f"Downloading {out} from {url}, please wait")
output = subprocess.check_output(['wget', '-O', out, url])
except subprocess.CalledProcessError as cpe:
output = cpe.output
print("Ignoring non-zero exit: ", output)