-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathmain.py
195 lines (152 loc) · 6.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
PyTorch implementation of CapsNet in Sabour, Hinton et al.'s paper
Dynamic Routing Between Capsules. NIPS 2017.
https://arxiv.org/abs/1710.09829
Usage:
python main.py
python main.py --epochs 50
python main.py --epochs 50 --loss-threshold 0.0001
Author: Cedric Chee
"""
from __future__ import print_function
import argparse
import torch
import torch.optim as optim
from torch.autograd import Variable
import utils
from model import Net
def train(model, data_loader, optimizer, epoch):
"""Train CapsuleNet model on training set
:param model: The CapsuleNet model
:param data_loader: An interator over the dataset. It combines a dataset and a sampler
:optimizer: Optimization algorithm
:epoch: Current epoch
:return: Loss
"""
print('===> Training mode')
last_loss = None
# Switch to train mode
model.train()
for batch_idx, (data, target) in enumerate(data_loader):
target_one_hot = utils.one_hot_encode(
target, length=model.digits.num_unit)
data, target = Variable(data), Variable(target_one_hot)
if args.cuda:
data = data.cuda()
target = target.cuda()
optimizer.zero_grad()
output = model(data)
loss = model.loss(output, target)
loss.backward()
last_loss = loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
mesg = 'Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100. * batch_idx / len(data_loader),
loss.data[0])
print(mesg)
if last_loss < args.loss_threshold:
# Stop training early
break
return last_loss
def test(model, data_loader):
"""Evaluate model on validation set
"""
print('===> Evaluate mode')
# Switch to evaluate mode
model.eval()
test_loss = 0
correct = 0
for data, target in data_loader:
target_indices = target
target_one_hot = utils.one_hot_encode(
target_indices, length=model.digits.num_unit)
data, target = Variable(data, volatile=True), Variable(target_one_hot)
if args.cuda:
data = data.cuda()
target = target.cuda()
output = model(data)
# sum up batch loss
test_loss += model.loss(output, target, size_average=False).data[0]
# evaluate
v_magnitud = torch.sqrt((output**2).sum(dim=2, keepdim=True))
pred = v_magnitud.data.max(1, keepdim=True)[1].cpu()
correct += pred.eq(target_indices.view_as(pred)).sum()
test_loss /= len(data_loader.dataset)
mesg = 'Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss,
correct,
len(data_loader.dataset),
100. * correct / len(data_loader.dataset))
print(mesg)
def main():
"""The main function
Entry point.
"""
global args
# Setting the hyper parameters
parser = argparse.ArgumentParser(description='Example of Capsule Network')
parser.add_argument('--epochs', type=int, default=10,
help='number of training epochs. default=10')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate. default=0.01')
parser.add_argument('--batch-size', type=int, default=128,
help='training batch size. default=128')
parser.add_argument('--test-batch-size', type=int,
default=128, help='testing batch size. default=128')
parser.add_argument('--loss-threshold', type=float, default=0.0001,
help='stop training if loss goes below this threshold. default=0.0001')
parser.add_argument('--log-interval', type=int, default=10,
help='how many batches to wait before logging training status, default=10')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training, default=false')
parser.add_argument('--threads', type=int, default=4,
help='number of threads for data loader to use, default=4')
parser.add_argument('--seed', type=int, default=42,
help='random seed for training. default=42')
parser.add_argument('--num-conv-channel', type=int, default=256,
help='number of convolutional channel. default=256')
parser.add_argument('--num-primary-unit', type=int, default=8,
help='number of primary unit. default=8')
parser.add_argument('--primary-unit-size', type=int,
default=1152, help='primary unit size. default=1152')
parser.add_argument('--output-unit-size', type=int,
default=16, help='output unit size. default=16')
parser.add_argument('--num-routing', type=int,
default=3, help='number of routing iteration. default=3')
args = parser.parse_args()
print(args)
# Check GPU or CUDA is available
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load data
train_loader, test_loader = utils.load_mnist(args)
# Build Capsule Network
print('===> Building model')
model = Net(num_conv_channel=args.num_conv_channel,
num_primary_unit=args.num_primary_unit,
primary_unit_size=args.primary_unit_size,
output_unit_size=args.output_unit_size,
num_routing=args.num_routing,
cuda_enabled=args.cuda)
if args.cuda:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Train and test
for epoch in range(1, args.epochs + 1):
previous_loss = train(model, train_loader, optimizer, epoch)
test(model, test_loader)
utils.checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, epoch)
if previous_loss < args.loss_threshold:
break
if __name__ == "__main__":
main()