-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathutils.py
59 lines (43 loc) · 1.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""Utilities
PyTorch implementation of CapsNet in Sabour, Hinton et al.'s paper
Dynamic Routing Between Capsules. NIPS 2017.
https://arxiv.org/abs/1710.09829
Author: Cedric Chee
"""
import torch
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
# Normalize MNIST dataset.
data_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
def one_hot_encode(target, length):
"""Converts batches of class indices to classes of one-hot vectors."""
batch_s = target.size(0)
one_hot_vec = torch.zeros(batch_s, length)
for i in range(batch_s):
one_hot_vec[i, target[i]] = 1.0
return one_hot_vec
def checkpoint(state, epoch):
"""Save checkpoint"""
model_out_path = 'model_epoch_{}.pth'.format(epoch)
torch.save(state, model_out_path)
print('Checkpoint saved to {}'.format(model_out_path))
def load_mnist(args):
"""Load MNIST dataset.
The data is split and normalized between train and test sets.
"""
kwargs = {'num_workers': args.threads,
'pin_memory': True} if args.cuda else {}
print('===> Loading training datasets')
training_set = datasets.MNIST(
'./data', train=True, download=True, transform=data_transform)
training_data_loader = DataLoader(
training_set, batch_size=args.batch_size, shuffle=True, **kwargs)
print('===> Loading testing datasets')
testing_set = datasets.MNIST(
'./data', train=False, download=True, transform=data_transform)
testing_data_loader = DataLoader(
testing_set, batch_size=args.test_batch_size, shuffle=True, **kwargs)
return training_data_loader, testing_data_loader