-
Contact DataCommons team to get data access to Cloud Bigtable and BigQuery.
-
Install the following tools
Make sure to add
GOPATH
and updatePATH
:# Use the actual path of your Go installation export GOPATH=/Users/<USER>/go/ export PATH=$PATH:$GOPATH/bin
-
Authenticate to GCP
gcloud components update gcloud auth login gcloud auth application-default login
Install the following packages as a one-time action.
cd ~/ # Be sure there is no go.mod in the local directory
go install google.golang.org/protobuf/cmd/[email protected]
go install google.golang.org/grpc/cmd/[email protected]
Run the following command to generate Go proto files.
# In repo root directory
protoc \
--proto_path=proto \
--go_out=paths=source_relative:internal/proto \
--go-grpc_out=paths=source_relative:internal/proto \
--go-grpc_opt=require_unimplemented_servers=false \
--experimental_allow_proto3_optional \
--include_imports \
--descriptor_set_out mixer-grpc.pb \
proto/*.proto proto/**/*.proto
Run the following code to start mixer gRPC server (without branch cache)
# In repo root directory
go run cmd/main.go \
--host_project=datcom-mixer-dev-316822 \
--bq_dataset=$(head -1 deploy/storage/bigquery.version) \
--base_bigtable_info="$(cat deploy/storage/base_bigtable_info.yaml)" \
--custom_bigtable_info="$(cat test/custom_bigtable_info.yaml)" \
--schema_path=$PWD/deploy/mapping/ \
--use_branch_bt=false
go run examples/main.go
Mixer can load and serve TMCF + CSV files. This is used for a private Data Commons instance. This requires to set the following flag
--use_tmcf_csv_data=true
--tmcf_csv_bucket=<bucket-name>
--tmcf_csv_folder=<folder-name>
Prerequists:
- Create a GCS bucket <BUCKET_NAME>
- Create a folder in the bucket <FOLDER_NAME> to host all the data files
Run the following code to start mixer gRPC server with TMCF + CSV files stored in GCS
# In repo root directory
go run cmd/main.go \
--host_project=datcom-mixer-dev-316822 \
--tmcf_csv_bucket=datcom-mixer-dev-resources \
--tmcf_csv_folder=test \
--use_tmcf_csv_data=true \
--use_bigquery=false \
--use_base_bt=false \
--use_branch_bt=false
Mixer is a gRPC service but callers (website, API clients) are normally http clients. Therefore developing and testing mixer locally often requires both the mixer gRPC server and its corresponding json transcoding server. HTTP to gRPC translation can be done locally thorugh envoy proxy. To install envoy, please follow the official doc.
Before running envoy proxy, please make sure mixer service definition(mixer-grpc.pb) is available by running the follow from repo root.
protoc --proto_path=proto \
--include_source_info \
--include_imports \
--descriptor_set_out mixer-grpc.pb \
proto/*.proto proto/**/*.proto
Assuming mixer gRPC server is at localhost:12345
, run the following from repo
root to spin up envoy proxy. This exposes the http mixer service at
localhost:8081
.
envoy --config-path esp/envoy-config.yaml
To view possible updates:
go list -m -u all
To update:
go get -u ./...
go mod tidy
./scripts/run_test.sh
./scripts/update_golden.sh
In root directory, run:
./test/e2e/run_latency.sh
Install Graphgiz.
go test -v -parallel 1 -cpuprofile cpu.prof -memprofile mem.prof XXX_test.go
go tool pprof -png cpu.prof
go tool pprof -png mem.prof
Run the regular go run cmd/main.go
command that you'd like to profile with the
flag --startup_memprof=<output_file_path>
. This will save the memory profile
to that path, and you can use go tool pprof
to analyze it. For example;
# Command from ### Start Mixer as a gRPC server backed by TMCF + CSV files
# In repo root directory
go run cmd/main.go \
--host_project=datcom-mixer-dev-316822 \
--bq_dataset=$(head -1 deploy/storage/bigquery.version) \
--base_bigtable_info="$(cat deploy/storage/base_bigtable_info.yaml)" \
--schema_path=$PWD/deploy/mapping/ \
--use_branch_bt=true
--startup_memprof=grpc.memprof # <-- note the additional flag here
# -sample_index=alloc_space reports on all memory allocations, including those
# that have been garbage collected. use -sample_index=inuse_space for memory
# still in use after garbage collection
go tool pprof -sample_index=alloc_space -png grpc.memprof
Run the regular go run cmd/main.go
command that you'd like to profile with the
flag --httpprof_port=<port, recommended 6060>
. This will run the mixer server
with an HTTP handler at that port serving memory and CPU profiles of the running
server.
# Command from ### Start Mixer as a gRPC server backed by TMCF + CSV files
# In repo root directory
go run cmd/main.go \
--host_project=datcom-mixer-dev-316822 \
--bq_dataset=$(head -1 deploy/storage/bigquery.version) \
--base_bigtable_info="$(cat deploy/storage/base_bigtable_info.yaml)" \
--schema_path=$PWD/deploy/mapping/ \
--use_branch_bt=true
--httpprof_port=6060 # <-- note the additional flag here
Once this server is ready to serve requests, you can send it requests and use
the profile handler to retrieve memory and CPU profiles. test/http_memprof/http_memprof.go
is a program that automatically sends and profiles the memory usage of given
gRPC calls. You can update this file to your profiling needs or use it as a
starting point for an independent script that will automatically run a suite of
tests.
# in another process...
go run test/http_memprof/http_memprof.go \
--grpc_addr=127.0.0.1:12345 \ # default is given; where to find the Mixer server
--prof_addr=127.0.0.1:6060 # default is given; where to find the live profile handler
go tool pprof
also supports ad-hoc profiling of servers started as described
above. To use, specify the URL at which the HTTP handler can be found as the
input file argument. pprof
will download a profile from the handler and open
in interactive mode to run queries.
# ?gc=1 triggers a garbage collection run before the memory profile is served
# See net/http/pprof for other URLs and profiles available https://pkg.go.dev/net/http/pprof
# with no flags specifying output, pprof goes into interactive mode
go tool pprof -sample_index=alloc_space 127.0.0.1:6060/debug/pprof/heap?gc=1