The code for paper: Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics.
- Install Pytorch and necessary dependencies.
pip install -r requirements.txt
- Train the model.
python -u run_Sumba.py --is_training 1 --root_path ./dataset/electricity/ --data_path electricity.csv --model_id ECL_168_3_Sumba --model Sumba --data custom --features M --seq_len 168 --label_len 84 --pred_len 3 --num_nodes 321 --subgraph_size 20 --des 'Exp' --batch_size 8 --learning_rate 0.0005 --itr 1
- Test the model.
python -u run_Sumba.py --is_training 0 --root_path ./dataset/electricity/ --data_path electricity.csv --model_id ECL_168_3_Sumba --model Sumba --data custom --features M --seq_len 168 --label_len 84 --pred_len 3 --num_nodes 321 --subgraph_size 20 --des 'Exp' --batch_size 8 --learning_rate 0.0005 --itr 1
@inproceedings{Sumba,
title={Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics},
author={Chen, Xiaodan and Li, Xiucheng and Chen, Xinyang and Li, Zhijun},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024}
}