-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
161 lines (132 loc) · 5.82 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import glob
import argparse
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
import torch.nn.functional as F
import cv2
import settings
from loader import get_test_loader
from models import UNetShipV1, UNetShipV2
from postprocessing import binarize, resize_image, split_mask, mask_to_bbox
from utils import run_length_encoding
from augmentation import tta_back_mask_np
def do_tta_predict(args, model, ckp_path, tta_indices):
'''
return 18000x128x128 np array
'''
model.eval()
preds = []
cls_preds = []
meta = None
# i is tta index, 0: no change, 1: horizon flip, 2: vertical flip, 3: do both
for flip_index in tta_indices:
print('flip_index:', flip_index)
test_loader = get_test_loader(args.batch_size, index=flip_index, dev_mode=args.dev_mode, img_sz=args.img_sz)
meta = test_loader.meta
outputs = None
cls_outputs = None
with torch.no_grad():
for i, img in enumerate(test_loader):
img = img.cuda()
output, cls_output = model(img)
output, cls_output = torch.sigmoid(output), torch.sigmoid(cls_output)
if outputs is None:
outputs = output.squeeze().cpu()
cls_outputs = cls_output.squeeze().cpu()
else:
outputs = torch.cat([outputs, output.squeeze().cpu()], 0)
cls_outputs = torch.cat([cls_outputs, cls_output.squeeze().cpu()])
#cls_preds.extend(cls_output.squeeze().cpu().tolist())
print('{} / {}'.format(args.batch_size*(i+1), test_loader.num), end='\r')
outputs = outputs.numpy()
cls_outputs = cls_outputs.numpy()
outputs = tta_back_mask_np(outputs, flip_index)
preds.append(outputs)
cls_preds.append(cls_outputs)
parent_dir = ckp_path+'_out'
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
np_file = os.path.join(parent_dir, 'pred_{}.npy'.format(''.join([str(x) for x in tta_indices])))
np_file_cls = os.path.join(parent_dir, 'pred_cls_{}.npy'.format(''.join([str(x) for x in tta_indices])))
model_pred_result = np.mean(preds, 0)
model_cls_pred_result = np.mean(cls_preds, 0)
np.save(np_file, model_pred_result)
np.save(np_file_cls, model_cls_pred_result)
return model_pred_result, model_cls_pred_result, meta
def predict(args, model, checkpoint, out_file):
print('predicting {}...'.format(checkpoint))
mask_outputs1, cls_preds1, meta = do_tta_predict(args, model, checkpoint, tta_indices=[0,1,2,3])
mask_outputs2, cls_preds2, meta = do_tta_predict(args, model, checkpoint, tta_indices=[4,5,6,7])
mask_outputs = np.mean([mask_outputs1, mask_outputs2], 0)
cls_preds = np.mean([cls_preds1, cls_preds2], 0)
print(mask_outputs.shape)
#print(len(cls_preds))
print(cls_preds)
#print(meta.head(10))
#y_pred_test = generate_preds(pred)
print(meta.shape)
ship_list_dict = []
for i, row in enumerate(meta.values):
img_id = row[0]
if cls_preds[i] < 0.5:
ship_list_dict.append({'ImageId': img_id,'EncodedPixels': np.nan})
else:
ship_rles = generate_preds(args, mask_outputs[i])
if ship_rles:
for ship_rle in ship_rles:
ship_list_dict.append({'ImageId': img_id,'EncodedPixels': ship_rle})
else:
ship_list_dict.append({'ImageId': img_id,'EncodedPixels': np.nan})
pred_df = pd.DataFrame(ship_list_dict)
pred_df.to_csv(args.sub_file, columns=['ImageId', 'EncodedPixels'], index=False)
#submission = create_submission(meta, y_pred_test)
#submission.to_csv(out_file, index=None, encoding='utf-8')
def generate_preds(args, output, target_size=(settings.ORIG_H, settings.ORIG_W), threshold=0.5):
pred_rles = []
#print(output.shape)
mask = resize_image(output, target_size=target_size)
#pred = binarize(cropped, threshold)
mask_objects = split_mask(mask)
if mask_objects:
for obj in mask_objects:
#print('detected obj:',obj.shape)
#print(obj.max())
#if args.bbox:
# obj = mask_to_bbox(obj)
pred_rles.append(run_length_encoding(obj))
if args.dev_mode:
cv2.imshow('mask', obj*255)
cv2.waitKey(0)
#pred = binarize(cropped, threshold)
#preds.append(pred)
return pred_rles
def predict_model(args):
model = eval(args.model_name)(args.layers)
if args.exp_name is None:
model_file = os.path.join(settings.MODEL_DIR, model.name, 'best.pth')
else:
model_file = os.path.join(settings.MODEL_DIR, args.exp_name, model.name, 'best.pth')
if os.path.exists(model_file):
print('loading {}...'.format(model_file))
model.load_state_dict(torch.load(model_file))
else:
raise ValueError('model file not found: {}'.format(model_file))
model = model.cuda()
predict(args, model, model_file, args.sub_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Salt segmentation')
parser.add_argument('--model_name', default='UNetShipV1', type=str, help='')
parser.add_argument('--layers', default=34, type=int, help='model layers')
parser.add_argument('--batch_size', default=32, type=int, help='batch_size')
parser.add_argument('--exp_name', default=None, type=str, help='exp name')
parser.add_argument('--sub_file', default='sub_2.csv', type=str, help='submission file')
parser.add_argument('--dev_mode', action='store_true')
parser.add_argument('--img_sz', default=384, type=int, help='image size')
#parser.add_argument('--bbox', action='store_true')
args = parser.parse_args()
print(args)
predict_model(args)
#ensemble_predict(args)