forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclaqz2.f
462 lines (435 loc) · 13.6 KB
/
claqz2.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
*> \brief \b CLAQZ2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAQZ2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/CLAQZ2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/CLAQZ2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/CLAQZ2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
* $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHA, BETA, QC, LDQC, ZC, LDZC,
* $ WORK, LWORK, RWORK, REC, INFO )
* IMPLICIT NONE
*
* Arguments
* LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
* INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
* $ LDQC, LDZC, LWORK, REC
*
* COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
* $ Z( LDZ, * ), ALPHA( * ), BETA( * )
* INTEGER, INTENT( OUT ) :: NS, ND, INFO
* COMPLEX :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
* REAL :: RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAQZ2 performs AED
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ILSCHUR
*> \verbatim
*> ILSCHUR is LOGICAL
*> Determines whether or not to update the full Schur form
*> \endverbatim
*>
*> \param[in] ILQ
*> \verbatim
*> ILQ is LOGICAL
*> Determines whether or not to update the matrix Q
*> \endverbatim
*>
*> \param[in] ILZ
*> \verbatim
*> ILZ is LOGICAL
*> Determines whether or not to update the matrix Z
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, Q, and Z. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI mark the rows and columns of (A,B) which
*> are to be normalized
*> \endverbatim
*>
*> \param[in] NW
*> \verbatim
*> NW is INTEGER
*> The desired size of the deflation window.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDQ, N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDZ, N)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] NS
*> \verbatim
*> NS is INTEGER
*> The number of unconverged eigenvalues available to
*> use as shifts.
*> \endverbatim
*>
*> \param[out] ND
*> \verbatim
*> ND is INTEGER
*> The number of converged eigenvalues found.
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX array, dimension (N)
*> Each scalar alpha defining an eigenvalue
*> of GNEP.
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (N)
*> The scalars beta that define the eigenvalues of GNEP.
*> Together, the quantities alpha = ALPHA(j) and
*> beta = BETA(j) represent the j-th eigenvalue of the matrix
*> pair (A,B), in one of the forms lambda = alpha/beta or
*> mu = beta/alpha. Since either lambda or mu may overflow,
*> they should not, in general, be computed.
*> \endverbatim
*>
*> \param[in,out] QC
*> \verbatim
*> QC is COMPLEX array, dimension (LDQC, NW)
*> \endverbatim
*>
*> \param[in] LDQC
*> \verbatim
*> LDQC is INTEGER
*> \endverbatim
*>
*> \param[in,out] ZC
*> \verbatim
*> ZC is COMPLEX array, dimension (LDZC, NW)
*> \endverbatim
*>
*> \param[in] LDZC
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[in] REC
*> \verbatim
*> REC is INTEGER
*> REC indicates the current recursion level. Should be set
*> to 0 on first call.
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven, KU Leuven
*
*> \date May 2020
*
*> \ingroup complexGEcomputational
*>
* =====================================================================
RECURSIVE SUBROUTINE CLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW,
$ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS,
$ ND, ALPHA, BETA, QC, LDQC, ZC, LDZC,
$ WORK, LWORK, RWORK, REC, INFO )
IMPLICIT NONE
* Arguments
LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
$ LDQC, LDZC, LWORK, REC
COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ Z( LDZ, * ), ALPHA( * ), BETA( * )
INTEGER, INTENT( OUT ) :: NS, ND, INFO
COMPLEX :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
REAL :: RWORK( * )
* Parameters
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0, 0.0 ), CONE = ( 1.0, 0.0 ) )
REAL :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
* Local Scalars
INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, CTGEXC_INFO,
$ IFST, ILST, LWORKREQ, QZ_SMALL_INFO
REAL :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR
COMPLEX :: S, S1, TEMP
* External Functions
EXTERNAL :: XERBLA, CLAQZ0, CLAQZ1, CLACPY, CLASET, CGEMM,
$ CTGEXC, CLARTG, CROT
REAL, EXTERNAL :: SLAMCH
INFO = 0
* Set up deflation window
JW = MIN( NW, IHI-ILO+1 )
KWTOP = IHI-JW+1
IF ( KWTOP .EQ. ILO ) THEN
S = CZERO
ELSE
S = A( KWTOP, KWTOP-1 )
END IF
* Determine required workspace
IFST = 1
ILST = JW
CALL CLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
$ B( KWTOP, KWTOP ), LDB, ALPHA, BETA, QC, LDQC, ZC,
$ LDZC, WORK, -1, RWORK, REC+1, QZ_SMALL_INFO )
LWORKREQ = INT( WORK( 1 ) )+2*JW**2
LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N )
IF ( LWORK .EQ.-1 ) THEN
* workspace query, quick return
WORK( 1 ) = LWORKREQ
RETURN
ELSE IF ( LWORK .LT. LWORKREQ ) THEN
INFO = -26
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAQZ2', -INFO )
RETURN
END IF
* Get machine constants
SAFMIN = SLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE/SAFMIN
ULP = SLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( REAL( N )/ULP )
IF ( IHI .EQ. KWTOP ) THEN
* 1 by 1 deflation window, just try a regular deflation
ALPHA( KWTOP ) = A( KWTOP, KWTOP )
BETA( KWTOP ) = B( KWTOP, KWTOP )
NS = 1
ND = 0
IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP,
$ KWTOP ) ) ) ) THEN
NS = 0
ND = 1
IF ( KWTOP .GT. ILO ) THEN
A( KWTOP, KWTOP-1 ) = CZERO
END IF
END IF
END IF
* Store window in case of convergence failure
CALL CLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW )
CALL CLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+
$ 1 ), JW )
* Transform window to real schur form
CALL CLASET( 'FULL', JW, JW, CZERO, CONE, QC, LDQC )
CALL CLASET( 'FULL', JW, JW, CZERO, CONE, ZC, LDZC )
CALL CLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
$ B( KWTOP, KWTOP ), LDB, ALPHA, BETA, QC, LDQC, ZC,
$ LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2, RWORK,
$ REC+1, QZ_SMALL_INFO )
IF( QZ_SMALL_INFO .NE. 0 ) THEN
* Convergence failure, restore the window and exit
ND = 0
NS = JW-QZ_SMALL_INFO
CALL CLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA )
CALL CLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP,
$ KWTOP ), LDB )
RETURN
END IF
* Deflation detection loop
IF ( KWTOP .EQ. ILO .OR. S .EQ. CZERO ) THEN
KWBOT = KWTOP-1
ELSE
KWBOT = IHI
K = 1
K2 = 1
DO WHILE ( K .LE. JW )
* Try to deflate eigenvalue
TEMPR = ABS( A( KWBOT, KWBOT ) )
IF( TEMPR .EQ. ZERO ) THEN
TEMPR = ABS( S )
END IF
IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP*
$ TEMPR, SMLNUM ) ) THEN
* Deflatable
KWBOT = KWBOT-1
ELSE
* Not deflatable, move out of the way
IFST = KWBOT-KWTOP+1
ILST = K2
CALL CTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
$ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
$ ZC, LDZC, IFST, ILST, CTGEXC_INFO )
K2 = K2+1
END IF
K = K+1
END DO
END IF
* Store eigenvalues
ND = IHI-KWBOT
NS = JW-ND
K = KWTOP
DO WHILE ( K .LE. IHI )
ALPHA( K ) = A( K, K )
BETA( K ) = B( K, K )
K = K+1
END DO
IF ( KWTOP .NE. ILO .AND. S .NE. CZERO ) THEN
* Reflect spike back, this will create optimally packed bulges
A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 ) *CONJG( QC( 1,
$ 1:JW-ND ) )
DO K = KWBOT-1, KWTOP, -1
CALL CLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1,
$ TEMP )
A( K, KWTOP-1 ) = TEMP
A( K+1, KWTOP-1 ) = CZERO
K2 = MAX( KWTOP, K-1 )
CALL CROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1,
$ S1 )
CALL CROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ),
$ LDB, C1, S1 )
CALL CROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ),
$ 1, C1, CONJG( S1 ) )
END DO
* Chase bulges down
ISTARTM = KWTOP
ISTOPM = IHI
K = KWBOT-1
DO WHILE ( K .GE. KWTOP )
* Move bulge down and remove it
DO K2 = K, KWBOT-1
CALL CLAQZ1( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1,
$ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC, LDQC,
$ JW, KWTOP, ZC, LDZC )
END DO
K = K-1
END DO
END IF
* Apply Qc and Zc to rest of the matrix
IF ( ILSCHUR ) THEN
ISTARTM = 1
ISTOPM = N
ELSE
ISTARTM = ILO
ISTOPM = IHI
END IF
IF ( ISTOPM-IHI > 0 ) THEN
CALL CGEMM( 'C', 'N', JW, ISTOPM-IHI, JW, CONE, QC, LDQC,
$ A( KWTOP, IHI+1 ), LDA, CZERO, WORK, JW )
CALL CLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP,
$ IHI+1 ), LDA )
CALL CGEMM( 'C', 'N', JW, ISTOPM-IHI, JW, CONE, QC, LDQC,
$ B( KWTOP, IHI+1 ), LDB, CZERO, WORK, JW )
CALL CLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP,
$ IHI+1 ), LDB )
END IF
IF ( ILQ ) THEN
CALL CGEMM( 'N', 'N', N, JW, JW, CONE, Q( 1, KWTOP ), LDQ, QC,
$ LDQC, CZERO, WORK, N )
CALL CLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ )
END IF
IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN
CALL CGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, CONE, A( ISTARTM,
$ KWTOP ), LDA, ZC, LDZC, CZERO, WORK,
$ KWTOP-ISTARTM )
CALL CLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
$ A( ISTARTM, KWTOP ), LDA )
CALL CGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, CONE, B( ISTARTM,
$ KWTOP ), LDB, ZC, LDZC, CZERO, WORK,
$ KWTOP-ISTARTM )
CALL CLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
$ B( ISTARTM, KWTOP ), LDB )
END IF
IF ( ILZ ) THEN
CALL CGEMM( 'N', 'N', N, JW, JW, CONE, Z( 1, KWTOP ), LDZ, ZC,
$ LDZC, CZERO, WORK, N )
CALL CLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ )
END IF
END SUBROUTINE