forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclartg.f90
290 lines (290 loc) · 7.87 KB
/
clartg.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
!> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
! Definition:
! ===========
!
! SUBROUTINE CLARTG( F, G, C, S, R )
!
! .. Scalar Arguments ..
! REAL(wp) C
! COMPLEX(wp) F, G, R, S
! ..
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> CLARTG generates a plane rotation so that
!>
!> [ C S ] . [ F ] = [ R ]
!> [ -conjg(S) C ] [ G ] [ 0 ]
!>
!> where C is real and C**2 + |S|**2 = 1.
!>
!> The mathematical formulas used for C and S are
!>
!> sgn(x) = { x / |x|, x != 0
!> { 1, x = 0
!>
!> R = sgn(F) * sqrt(|F|**2 + |G|**2)
!>
!> C = |F| / sqrt(|F|**2 + |G|**2)
!>
!> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
!>
!> Special conditions:
!> If G=0, then C=1 and S=0.
!> If F=0, then C=0 and S is chosen so that R is real.
!>
!> When F and G are real, the formulas simplify to C = F/R and
!> S = G/R, and the returned values of C, S, and R should be
!> identical to those returned by SLARTG.
!>
!> The algorithm used to compute these quantities incorporates scaling
!> to avoid overflow or underflow in computing the square root of the
!> sum of squares.
!>
!> This is the same routine CROTG fom BLAS1, except that
!> F and G are unchanged on return.
!>
!> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
!> \endverbatim
!
! Arguments:
! ==========
!
!> \param[in] F
!> \verbatim
!> F is COMPLEX(wp)
!> The first component of vector to be rotated.
!> \endverbatim
!>
!> \param[in] G
!> \verbatim
!> G is COMPLEX(wp)
!> The second component of vector to be rotated.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL(wp)
!> The cosine of the rotation.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is COMPLEX(wp)
!> The sine of the rotation.
!> \endverbatim
!>
!> \param[out] R
!> \verbatim
!> R is COMPLEX(wp)
!> The nonzero component of the rotated vector.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Weslley Pereira, University of Colorado Denver, USA
!
!> \date December 2021
!
!> \ingroup OTHERauxiliary
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Based on the algorithm from
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
subroutine CLARTG( f, g, c, s, r )
use LA_CONSTANTS, &
only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, &
safmin=>ssafmin, safmax=>ssafmax
!
! -- LAPACK auxiliary routine --
! -- LAPACK is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! February 2021
!
! .. Scalar Arguments ..
real(wp) c
complex(wp) f, g, r, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
complex(wp) :: fs, gs, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: ABSSQ
! ..
! .. Statement Function definitions ..
ABSSQ( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Constants ..
rtmin = sqrt( safmin )
! ..
! .. Executable Statements ..
!
if( g == czero ) then
c = one
s = czero
r = f
else if( f == czero ) then
c = zero
if( real(g) == zero ) then
r = abs(aimag(g))
s = conjg( g ) / r
elseif( aimag(g) == zero ) then
r = abs(real(g))
s = conjg( g ) / r
else
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/2 )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
! The following two lines can be replaced by `d = abs( g )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
gs = g / u
! The following two lines can be replaced by `d = abs( gs )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
end if
end if
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/4 )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = ABSSQ( f )
g2 = ABSSQ( g )
h2 = f2 + g2
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = f / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( g ) * ( f / sqrt( f2*h2 ) )
else
s = conjg( g ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = f / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = f * ( h2 / d )
end if
s = conjg( g ) * ( f / d )
end if
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
gs = g / u
g2 = ABSSQ( gs )
if( f1 / u < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
w = v / u
fs = f / v
f2 = ABSSQ( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f / u
f2 = ABSSQ( fs )
h2 = f2 + g2
end if
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = fs / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
else
s = conjg( gs ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = fs / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = fs * ( h2 / d )
end if
s = conjg( gs ) * ( fs / d )
end if
! Rescale c and r
c = c * w
r = r * u
end if
end if
return
end subroutine