forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclatrs3.f
666 lines (665 loc) · 23.6 KB
/
clatrs3.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
*> \brief \b CLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
*
* Definition:
* ===========
*
* SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
* X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORMIN, TRANS, UPLO
* INTEGER INFO, LDA, LWORK, LDX, N, NRHS
* ..
* .. Array Arguments ..
* REAL CNORM( * ), SCALE( * ), WORK( * )
* COMPLEX A( LDA, * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATRS3 solves one of the triangular systems
*>
*> A * X = B * diag(scale), A**T * X = B * diag(scale), or
*> A**H * X = B * diag(scale)
*>
*> with scaling to prevent overflow. Here A is an upper or lower
*> triangular matrix, A**T denotes the transpose of A, A**H denotes the
*> conjugate transpose of A. X and B are n-by-nrhs matrices and scale
*> is an nrhs-element vector of scaling factors. A scaling factor scale(j)
*> is usually less than or equal to 1, chosen such that X(:,j) is less
*> than the overflow threshold. If the matrix A is singular (A(j,j) = 0
*> for some j), then a non-trivial solution to A*X = 0 is returned. If
*> the system is so badly scaled that the solution cannot be represented
*> as (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned.
*>
*> This is a BLAS-3 version of LATRS for solving several right
*> hand sides simultaneously.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': Solve A * x = s*b (No transpose)
*> = 'T': Solve A**T* x = s*b (Transpose)
*> = 'C': Solve A**T* x = s*b (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] NORMIN
*> \verbatim
*> NORMIN is CHARACTER*1
*> Specifies whether CNORM has been set or not.
*> = 'Y': CNORM contains the column norms on entry
*> = 'N': CNORM is not set on entry. On exit, the norms will
*> be computed and stored in CNORM.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The triangular matrix A. If UPLO = 'U', the leading n by n
*> upper triangular part of the array A contains the upper
*> triangular matrix, and the strictly lower triangular part of
*> A is not referenced. If UPLO = 'L', the leading n by n lower
*> triangular part of the array A contains the lower triangular
*> matrix, and the strictly upper triangular part of A is not
*> referenced. If DIAG = 'U', the diagonal elements of A are
*> also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max (1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> On entry, the right hand side B of the triangular system.
*> On exit, X is overwritten by the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max (1,N).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is REAL array, dimension (NRHS)
*> The scaling factor s(k) is for the triangular system
*> A * x(:,k) = s(k)*b(:,k) or A**T* x(:,k) = s(k)*b(:,k).
*> If SCALE = 0, the matrix A is singular or badly scaled.
*> If A(j,j) = 0 is encountered, a non-trivial vector x(:,k)
*> that is an exact or approximate solution to A*x(:,k) = 0
*> is returned. If the system so badly scaled that solution
*> cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0
*> is returned.
*> \endverbatim
*>
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is REAL array, dimension (N)
*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK).
*> On exit, if INFO = 0, WORK(1) returns the optimal size of
*> WORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> LWORK is INTEGER
*> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where
*> NBA = (N + NB - 1)/NB and NB is the optimal block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal dimensions of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERauxiliary
*> \par Further Details:
* =====================
* \verbatim
* The algorithm follows the structure of a block triangular solve.
* The diagonal block is solved with a call to the robust the triangular
* solver LATRS for every right-hand side RHS = 1, ..., NRHS
* op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ),
* where op( A ) = A or op( A ) = A**T or op( A ) = A**H.
* The linear block updates operate on block columns of X,
* B( I, K ) - op(A( I, J )) * X( J, K )
* and use GEMM. To avoid overflow in the linear block update, the worst case
* growth is estimated. For every RHS, a scale factor s <= 1.0 is computed
* such that
* || s * B( I, RHS )||_oo
* + || op(A( I, J )) ||_oo * || s * X( J, RHS ) ||_oo <= Overflow threshold
*
* Once all columns of a block column have been rescaled (BLAS-1), the linear
* update is executed with GEMM without overflow.
*
* To limit rescaling, local scale factors track the scaling of column segments.
* There is one local scale factor s( I, RHS ) per block row I = 1, ..., NBA
* per right-hand side column RHS = 1, ..., NRHS. The global scale factor
* SCALE( RHS ) is chosen as the smallest local scale factor s( I, RHS )
* I = 1, ..., NBA.
* A triangular solve op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS )
* updates the local scale factor s( J, RHS ) := s( J, RHS ) * SCALOC. The
* linear update of potentially inconsistently scaled vector segments
* s( I, RHS ) * b( I, RHS ) - op(A( I, J )) * ( s( J, RHS )* x( J, RHS ) )
* computes a consistent scaling SCAMIN = MIN( s(I, RHS ), s(J, RHS) ) and,
* if necessary, rescales the blocks prior to calling GEMM.
*
* \endverbatim
* =====================================================================
* References:
* C. C. Kjelgaard Mikkelsen, A. B. Schwarz and L. Karlsson (2019).
* Parallel robust solution of triangular linear systems. Concurrency
* and Computation: Practice and Experience, 31(19), e5064.
*
* Contributor:
* Angelika Schwarz, Umea University, Sweden.
*
* =====================================================================
SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
$ X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, NORMIN, UPLO
INTEGER INFO, LDA, LWORK, LDX, N, NRHS
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), X( LDX, * )
REAL CNORM( * ), SCALE( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER NBMAX, NBMIN, NBRHS, NRHSMIN
PARAMETER ( NRHSMIN = 2, NBRHS = 32 )
PARAMETER ( NBMIN = 8, NBMAX = 64 )
* ..
* .. Local Arrays ..
REAL W( NBMAX ), XNRM( NBRHS )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER
INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J,
$ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2,
$ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS
REAL ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC,
$ SCAMIN, SMLNUM, TMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL SLAMCH, CLANGE, SLARMM
EXTERNAL ILAENV, LSAME, SLAMCH, CLANGE, SLARMM
* ..
* .. External Subroutines ..
EXTERNAL CLATRS, CSSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* Partition A and X into blocks.
*
NB = MAX( NBMIN, ILAENV( 1, 'CLATRS', '', N, N, -1, -1 ) )
NB = MIN( NBMAX, NB )
NBA = MAX( 1, (N + NB - 1) / NB )
NBX = MAX( 1, (NRHS + NBRHS - 1) / NBRHS )
*
* Compute the workspace
*
* The workspace comprises two parts.
* The first part stores the local scale factors. Each simultaneously
* computed right-hand side requires one local scale factor per block
* row. WORK( I + KK * LDS ) is the scale factor of the vector
* segment associated with the I-th block row and the KK-th vector
* in the block column.
LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) )
LDS = NBA
* The second part stores upper bounds of the triangular A. There are
* a total of NBA x NBA blocks, of which only the upper triangular
* part or the lower triangular part is referenced. The upper bound of
* the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ).
LANRM = NBA * NBA
AWRK = LSCALE
WORK( 1 ) = LSCALE + LANRM
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLATRS3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Initialize scaling factors
*
DO KK = 1, NRHS
SCALE( KK ) = ONE
END DO
*
* Quick return if possible
*
IF( MIN( N, NRHS ).EQ.0 )
$ RETURN
*
* Determine machine dependent constant to control overflow.
*
BIGNUM = SLAMCH( 'Overflow' )
SMLNUM = SLAMCH( 'Safe Minimum' )
*
* Use unblocked code for small problems
*
IF( NRHS.LT.NRHSMIN ) THEN
CALL CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X( 1, 1 ),
$ SCALE( 1 ), CNORM, INFO )
DO K = 2, NRHS
CALL CLATRS( UPLO, TRANS, DIAG, 'Y', N, A, LDA, X( 1, K ),
$ SCALE( K ), CNORM, INFO )
END DO
RETURN
END IF
*
* Compute norms of blocks of A excluding diagonal blocks and find
* the block with the largest norm TMAX.
*
TMAX = ZERO
DO J = 1, NBA
J1 = (J-1)*NB + 1
J2 = MIN( J*NB, N ) + 1
IF ( UPPER ) THEN
IFIRST = 1
ILAST = J - 1
ELSE
IFIRST = J + 1
ILAST = NBA
END IF
DO I = IFIRST, ILAST
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
*
* Compute upper bound of A( I1:I2-1, J1:J2-1 ).
*
IF( NOTRAN ) THEN
ANRM = CLANGE( 'I', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
WORK( AWRK + I+(J-1)*NBA ) = ANRM
ELSE
ANRM = CLANGE( '1', I2-I1, J2-J1, A( I1, J1 ), LDA, W )
WORK( AWRK + J+(I-1)*NBA ) = ANRM
END IF
TMAX = MAX( TMAX, ANRM )
END DO
END DO
*
IF( .NOT. TMAX.LE.SLAMCH('Overflow') ) THEN
*
* Some matrix entries have huge absolute value. At least one upper
* bound norm( A(I1:I2-1, J1:J2-1), 'I') is not a valid floating-point
* number, either due to overflow in LANGE or due to Inf in A.
* Fall back to LATRS. Set normin = 'N' for every right-hand side to
* force computation of TSCAL in LATRS to avoid the likely overflow
* in the computation of the column norms CNORM.
*
DO K = 1, NRHS
CALL CLATRS( UPLO, TRANS, DIAG, 'N', N, A, LDA, X( 1, K ),
$ SCALE( K ), CNORM, INFO )
END DO
RETURN
END IF
*
* Every right-hand side requires workspace to store NBA local scale
* factors. To save workspace, X is computed successively in block columns
* of width NBRHS, requiring a total of NBA x NBRHS space. If sufficient
* workspace is available, larger values of NBRHS or NBRHS = NRHS are viable.
DO K = 1, NBX
* Loop over block columns (index = K) of X and, for column-wise scalings,
* over individual columns (index = KK).
* K1: column index of the first column in X( J, K )
* K2: column index of the first column in X( J, K+1 )
* so the K2 - K1 is the column count of the block X( J, K )
K1 = (K-1)*NBRHS + 1
K2 = MIN( K*NBRHS, NRHS ) + 1
*
* Initialize local scaling factors of current block column X( J, K )
*
DO KK = 1, K2-K1
DO I = 1, NBA
WORK( I+KK*LDS ) = ONE
END DO
END DO
*
IF( NOTRAN ) THEN
*
* Solve A * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
*
IF( UPPER ) THEN
JFIRST = NBA
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = NBA
JINC = 1
END IF
ELSE
*
* Solve op(A) * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
* where op(A) = A**T or op(A) = A**H
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = NBA
JINC = 1
ELSE
JFIRST = NBA
JLAST = 1
JINC = -1
END IF
END IF
DO J = JFIRST, JLAST, JINC
* J1: row index of the first row in A( J, J )
* J2: row index of the first row in A( J+1, J+1 )
* so that J2 - J1 is the row count of the block A( J, J )
J1 = (J-1)*NB + 1
J2 = MIN( J*NB, N ) + 1
*
* Solve op(A( J, J )) * X( J, RHS ) = SCALOC * B( J, RHS )
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
IF( KK.EQ.1 ) THEN
CALL CLATRS( UPLO, TRANS, DIAG, 'N', J2-J1,
$ A( J1, J1 ), LDA, X( J1, RHS ),
$ SCALOC, CNORM, INFO )
ELSE
CALL CLATRS( UPLO, TRANS, DIAG, 'Y', J2-J1,
$ A( J1, J1 ), LDA, X( J1, RHS ),
$ SCALOC, CNORM, INFO )
END IF
* Find largest absolute value entry in the vector segment
* X( J1:J2-1, RHS ) as an upper bound for the worst case
* growth in the linear updates.
XNRM( KK ) = CLANGE( 'I', J2-J1, 1, X( J1, RHS ),
$ LDX, W )
*
IF( SCALOC .EQ. ZERO ) THEN
* LATRS found that A is singular through A(j,j) = 0.
* Reset the computation x(1:n) = 0, x(j) = 1, SCALE = 0
* and compute op(A)*x = 0. Note that X(J1:J2-1, KK) is
* set by LATRS.
SCALE( RHS ) = ZERO
DO II = 1, J1-1
X( II, KK ) = CZERO
END DO
DO II = J2, N
X( II, KK ) = CZERO
END DO
* Discard the local scale factors.
DO II = 1, NBA
WORK( II+KK*LDS ) = ONE
END DO
SCALOC = ONE
ELSE IF( SCALOC*WORK( J+KK*LDS ) .EQ. ZERO ) THEN
* LATRS computed a valid scale factor, but combined with
* the current scaling the solution does not have a
* scale factor > 0.
*
* Set WORK( J+KK*LDS ) to smallest valid scale
* factor and increase SCALOC accordingly.
SCAL = WORK( J+KK*LDS ) / SMLNUM
SCALOC = SCALOC * SCAL
WORK( J+KK*LDS ) = SMLNUM
* If LATRS overestimated the growth, x may be
* rescaled to preserve a valid combined scale
* factor WORK( J, KK ) > 0.
RSCAL = ONE / SCALOC
IF( XNRM( KK )*RSCAL .LE. BIGNUM ) THEN
XNRM( KK ) = XNRM( KK ) * RSCAL
CALL CSSCAL( J2-J1, RSCAL, X( J1, RHS ), 1 )
SCALOC = ONE
ELSE
* The system op(A) * x = b is badly scaled and its
* solution cannot be represented as (1/scale) * x.
* Set x to zero. This approach deviates from LATRS
* where a completely meaningless non-zero vector
* is returned that is not a solution to op(A) * x = b.
SCALE( RHS ) = ZERO
DO II = 1, N
X( II, KK ) = CZERO
END DO
* Discard the local scale factors.
DO II = 1, NBA
WORK( II+KK*LDS ) = ONE
END DO
SCALOC = ONE
END IF
END IF
SCALOC = SCALOC * WORK( J+KK*LDS )
WORK( J+KK*LDS ) = SCALOC
END DO
*
* Linear block updates
*
IF( NOTRAN ) THEN
IF( UPPER ) THEN
IFIRST = J - 1
ILAST = 1
IINC = -1
ELSE
IFIRST = J + 1
ILAST = NBA
IINC = 1
END IF
ELSE
IF( UPPER ) THEN
IFIRST = J + 1
ILAST = NBA
IINC = 1
ELSE
IFIRST = J - 1
ILAST = 1
IINC = -1
END IF
END IF
*
DO I = IFIRST, ILAST, IINC
* I1: row index of the first column in X( I, K )
* I2: row index of the first column in X( I+1, K )
* so the I2 - I1 is the row count of the block X( I, K )
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
*
* Prepare the linear update to be executed with GEMM.
* For each column, compute a consistent scaling, a
* scaling factor to survive the linear update, and
* rescale the column segments, if necessary. Then
* the linear update is safely executed.
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
* Compute consistent scaling
SCAMIN = MIN( WORK( I+KK*LDS), WORK( J+KK*LDS ) )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
BNRM = CLANGE( 'I', I2-I1, 1, X( I1, RHS ), LDX, W )
BNRM = BNRM*( SCAMIN / WORK( I+KK*LDS ) )
XNRM( KK ) = XNRM( KK )*( SCAMIN / WORK( J+KK*LDS) )
ANRM = WORK( AWRK + I+(J-1)*NBA )
SCALOC = SLARMM( ANRM, XNRM( KK ), BNRM )
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to X( I, KK ) and X( J, KK ).
*
SCAL = ( SCAMIN / WORK( I+KK*LDS) )*SCALOC
IF( SCAL.NE.ONE ) THEN
CALL CSSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
WORK( I+KK*LDS ) = SCAMIN*SCALOC
END IF
*
SCAL = ( SCAMIN / WORK( J+KK*LDS ) )*SCALOC
IF( SCAL.NE.ONE ) THEN
CALL CSSCAL( J2-J1, SCAL, X( J1, RHS ), 1 )
WORK( J+KK*LDS ) = SCAMIN*SCALOC
END IF
END DO
*
IF( NOTRAN ) THEN
*
* B( I, K ) := B( I, K ) - A( I, J ) * X( J, K )
*
CALL CGEMM( 'N', 'N', I2-I1, K2-K1, J2-J1, -CONE,
$ A( I1, J1 ), LDA, X( J1, K1 ), LDX,
$ CONE, X( I1, K1 ), LDX )
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* B( I, K ) := B( I, K ) - A( I, J )**T * X( J, K )
*
CALL CGEMM( 'T', 'N', I2-I1, K2-K1, J2-J1, -CONE,
$ A( J1, I1 ), LDA, X( J1, K1 ), LDX,
$ CONE, X( I1, K1 ), LDX )
ELSE
*
* B( I, K ) := B( I, K ) - A( I, J )**H * X( J, K )
*
CALL CGEMM( 'C', 'N', I2-I1, K2-K1, J2-J1, -CONE,
$ A( J1, I1 ), LDA, X( J1, K1 ), LDX,
$ CONE, X( I1, K1 ), LDX )
END IF
END DO
END DO
*
* Reduce local scaling factors
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
DO I = 1, NBA
SCALE( RHS ) = MIN( SCALE( RHS ), WORK( I+KK*LDS ) )
END DO
END DO
*
* Realize consistent scaling
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
IF( SCALE( RHS ).NE.ONE .AND. SCALE( RHS ).NE. ZERO ) THEN
DO I = 1, NBA
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
SCAL = SCALE( RHS ) / WORK( I+KK*LDS )
IF( SCAL.NE.ONE )
$ CALL CSSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
END DO
END IF
END DO
END DO
RETURN
*
* End of CLATRS3
*
END