forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdgedmd.f90
1054 lines (1046 loc) · 45.3 KB
/
dgedmd.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SUBROUTINE DGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, REIG, IMEIG, Z, LDZ, RES, &
B, LDB, W, LDW, S, LDS, &
WORK, LWORK, IWORK, LIWORK, INFO )
! March 2023
!.....
USE iso_fortran_env
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!.....
! Scalar arguments
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LWORK, LIWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
REAL(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
REAL(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!............................................................
! Purpose
! =======
! DGEDMD computes the Dynamic Mode Decomposition (DMD) for
! a pair of data snapshot matrices. For the input matrices
! X and Y such that Y = A*X with an unaccessible matrix
! A, DGEDMD computes a certain number of Ritz pairs of A using
! the standard Rayleigh-Ritz extraction from a subspace of
! range(X) that is determined using the leading left singular
! vectors of X. Optionally, DGEDMD returns the residuals
! of the computed Ritz pairs, the information needed for
! a refinement of the Ritz vectors, or the eigenvectors of
! the Exact DMD.
! For further details see the references listed
! below. For more details of the implementation see [3].
!
! References
! ==========
! [1] P. Schmid: Dynamic mode decomposition of numerical
! and experimental data,
! Journal of Fluid Mechanics 656, 5-28, 2010.
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
! decompositions: analysis and enhancements,
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
! [3] Z. Drmac: A LAPACK implementation of the Dynamic
! Mode Decomposition I. Technical report. AIMDyn Inc.
! and LAPACK Working Note 298.
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
! Brunton, N. Kutz: On Dynamic Mode Decomposition:
! Theory and Applications, Journal of Computational
! Dynamics 1(2), 391 -421, 2014.
!
!......................................................................
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; [email protected]
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! and supported by
! - DARPA SBIR project "Koopman Operator-Based Forecasting
! for Nonstationary Processes from Near-Term, Limited
! Observational Data" Contract No: W31P4Q-21-C-0007
! - DARPA PAI project "Physics-Informed Machine Learning
! Methodologies" Contract No: HR0011-18-9-0033
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
! Framework for Space-Time Analysis of Process Dynamics"
! Contract No: HR0011-16-C-0116
! Any opinions, findings and conclusions or recommendations
! expressed in this material are those of the author and
! do not necessarily reflect the views of the DARPA SBIR
! Program Office
!============================================================
! Distribution Statement A:
! Approved for Public Release, Distribution Unlimited.
! Cleared by DARPA on September 29, 2022
!============================================================
!............................................................
! Arguments
! =========
! JOBS (input) CHARACTER*1
! Determines whether the initial data snapshots are scaled
! by a diagonal matrix.
! 'S' :: The data snapshots matrices X and Y are multiplied
! with a diagonal matrix D so that X*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'C' :: The snapshots are scaled as with the 'S' option.
! If it is found that an i-th column of X is zero
! vector and the corresponding i-th column of Y is
! non-zero, then the i-th column of Y is set to
! zero and a warning flag is raised.
! 'Y' :: The data snapshots matrices X and Y are multiplied
! by a diagonal matrix D so that Y*D has unit
! nonzero columns (in the Euclidean 2-norm)
! 'N' :: No data scaling.
!.....
! JOBZ (input) CHARACTER*1
! Determines whether the eigenvectors (Koopman modes) will
! be computed.
! 'V' :: The eigenvectors (Koopman modes) will be computed
! and returned in the matrix Z.
! See the description of Z.
! 'F' :: The eigenvectors (Koopman modes) will be returned
! in factored form as the product X(:,1:K)*W, where X
! contains a POD basis (leading left singular vectors
! of the data matrix X) and W contains the eigenvectors
! of the corresponding Rayleigh quotient.
! See the descriptions of K, X, W, Z.
! 'N' :: The eigenvectors are not computed.
!.....
! JOBR (input) CHARACTER*1
! Determines whether to compute the residuals.
! 'R' :: The residuals for the computed eigenpairs will be
! computed and stored in the array RES.
! See the description of RES.
! For this option to be legal, JOBZ must be 'V'.
! 'N' :: The residuals are not computed.
!.....
! JOBF (input) CHARACTER*1
! Specifies whether to store information needed for post-
! processing (e.g. computing refined Ritz vectors)
! 'R' :: The matrix needed for the refinement of the Ritz
! vectors is computed and stored in the array B.
! See the description of B.
! 'E' :: The unscaled eigenvectors of the Exact DMD are
! computed and returned in the array B. See the
! description of B.
! 'N' :: No eigenvector refinement data is computed.
!.....
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
! Allows for a selection of the SVD algorithm from the
! LAPACK library.
! 1 :: DGESVD (the QR SVD algorithm)
! 2 :: DGESDD (the Divide and Conquer algorithm; if enough
! workspace available, this is the fastest option)
! 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4
! are the most accurate options)
! 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
! are the most accurate options)
! For the four methods above, a significant difference in
! the accuracy of small singular values is possible if
! the snapshots vary in norm so that X is severely
! ill-conditioned. If small (smaller than EPS*||X||)
! singular values are of interest and JOBS=='N', then
! the options (3, 4) give the most accurate results, where
! the option 4 is slightly better and with stronger
! theoretical background.
! If JOBS=='S', i.e. the columns of X will be normalized,
! then all methods give nearly equally accurate results.
!.....
! M (input) INTEGER, M>= 0
! The state space dimension (the row dimension of X, Y).
!.....
! N (input) INTEGER, 0 <= N <= M
! The number of data snapshot pairs
! (the number of columns of X and Y).
!.....
! X (input/output) REAL(KIND=WP) M-by-N array
! > On entry, X contains the data snapshot matrix X. It is
! assumed that the column norms of X are in the range of
! the normalized floating point numbers.
! < On exit, the leading K columns of X contain a POD basis,
! i.e. the leading K left singular vectors of the input
! data matrix X, U(:,1:K). All N columns of X contain all
! left singular vectors of the input matrix X.
! See the descriptions of K, Z and W.
!.....
! LDX (input) INTEGER, LDX >= M
! The leading dimension of the array X.
!.....
! Y (input/workspace/output) REAL(KIND=WP) M-by-N array
! > On entry, Y contains the data snapshot matrix Y
! < On exit,
! If JOBR == 'R', the leading K columns of Y contain
! the residual vectors for the computed Ritz pairs.
! See the description of RES.
! If JOBR == 'N', Y contains the original input data,
! scaled according to the value of JOBS.
!.....
! LDY (input) INTEGER , LDY >= M
! The leading dimension of the array Y.
!.....
! NRNK (input) INTEGER
! Determines the mode how to compute the numerical rank,
! i.e. how to truncate small singular values of the input
! matrix X. On input, if
! NRNK = -1 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(1).
! This option is recommended.
! NRNK = -2 :: i-th singular value sigma(i) is truncated
! if sigma(i) <= TOL*sigma(i-1)
! This option is included for R&D purposes.
! It requires highly accurate SVD, which
! may not be feasible.
!
! The numerical rank can be enforced by using positive
! value of NRNK as follows:
! 0 < NRNK <= N :: at most NRNK largest singular values
! will be used. If the number of the computed nonzero
! singular values is less than NRNK, then only those
! nonzero values will be used and the actually used
! dimension is less than NRNK. The actual number of
! the nonzero singular values is returned in the variable
! K. See the descriptions of TOL and K.
!.....
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1
! The tolerance for truncating small singular values.
! See the description of NRNK.
!.....
! K (output) INTEGER, 0 <= K <= N
! The dimension of the POD basis for the data snapshot
! matrix X and the number of the computed Ritz pairs.
! The value of K is determined according to the rule set
! by the parameters NRNK and TOL.
! See the descriptions of NRNK and TOL.
!.....
! REIG (output) REAL(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of REIG contain
! the real parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! See the descriptions of K, IMEIG, and Z.
!.....
! IMEIG (output) REAL(KIND=WP) N-by-1 array
! The leading K (K<=N) entries of IMEIG contain
! the imaginary parts of the computed eigenvalues
! REIG(1:K) + sqrt(-1)*IMEIG(1:K).
! The eigenvalues are determined as follows:
! If IMEIG(i) == 0, then the corresponding eigenvalue is
! real, LAMBDA(i) = REIG(i).
! If IMEIG(i)>0, then the corresponding complex
! conjugate pair of eigenvalues reads
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
! That is, complex conjugate pairs have consecutive
! indices (i,i+1), with the positive imaginary part
! listed first.
! See the descriptions of K, REIG, and Z.
!.....
! Z (workspace/output) REAL(KIND=WP) M-by-N array
! If JOBZ =='V' then
! Z contains real Ritz vectors as follows:
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of
! the i-th Ritz value; ||Z(:,i)||_2=1.
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
! [Z(:,i) Z(:,i+1)] span an invariant subspace and
! the Ritz values extracted from this subspace are
! REIG(i) + sqrt(-1)*IMEIG(i) and
! REIG(i) - sqrt(-1)*IMEIG(i).
! The corresponding eigenvectors are
! Z(:,i) + sqrt(-1)*Z(:,i+1) and
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
! || Z(:,i:i+1)||_F = 1.
! If JOBZ == 'F', then the above descriptions hold for
! the columns of X(:,1:K)*W(1:K,1:K), where the columns
! of W(1:k,1:K) are the computed eigenvectors of the
! K-by-K Rayleigh quotient. The columns of W(1:K,1:K)
! are similarly structured: If IMEIG(i) == 0 then
! X(:,1:K)*W(:,i) is an eigenvector, and if IMEIG(i)>0
! then X(:,1:K)*W(:,i)+sqrt(-1)*X(:,1:K)*W(:,i+1) and
! X(:,1:K)*W(:,i)-sqrt(-1)*X(:,1:K)*W(:,i+1)
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
! See the descriptions of REIG, IMEIG, X and W.
!.....
! LDZ (input) INTEGER , LDZ >= M
! The leading dimension of the array Z.
!.....
! RES (output) REAL(KIND=WP) N-by-1 array
! RES(1:K) contains the residuals for the K computed
! Ritz pairs.
! If LAMBDA(i) is real, then
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
! then
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
! It holds that
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
! See the description of REIG, IMEIG and Z.
!.....
! B (output) REAL(KIND=WP) M-by-N array.
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
! be used for computing the refined vectors; see further
! details in the provided references.
! If JOBF == 'E', B(1:M,1;K) contains
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
! Exact DMD, up to scaling by the inverse eigenvalues.
! If JOBF =='N', then B is not referenced.
! See the descriptions of X, W, K.
!.....
! LDB (input) INTEGER, LDB >= M
! The leading dimension of the array B.
!.....
! W (workspace/output) REAL(KIND=WP) N-by-N array
! On exit, W(1:K,1:K) contains the K computed
! eigenvectors of the matrix Rayleigh quotient (real and
! imaginary parts for each complex conjugate pair of the
! eigenvalues). The Ritz vectors (returned in Z) are the
! product of X (containing a POD basis for the input
! matrix X) and W. See the descriptions of K, S, X and Z.
! W is also used as a workspace to temporarily store the
! right singular vectors of X.
!.....
! LDW (input) INTEGER, LDW >= N
! The leading dimension of the array W.
!.....
! S (workspace/output) REAL(KIND=WP) N-by-N array
! The array S(1:K,1:K) is used for the matrix Rayleigh
! quotient. This content is overwritten during
! the eigenvalue decomposition by DGEEV.
! See the description of K.
!.....
! LDS (input) INTEGER, LDS >= N
! The leading dimension of the array S.
!.....
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
! On exit, WORK(1:N) contains the singular values of
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
! If WHTSVD==4, then WORK(N+1) and WORK(N+2) contain
! scaling factor WORK(N+2)/WORK(N+1) used to scale X
! and Y to avoid overflow in the SVD of X.
! This may be of interest if the scaling option is off
! and as many as possible smallest eigenvalues are
! desired to the highest feasible accuracy.
! If the call to DGEDMD is only workspace query, then
! WORK(1) contains the minimal workspace length and
! WORK(2) is the optimal workspace length. Hence, the
! leng of work is at least 2.
! See the description of LWORK.
!.....
! LWORK (input) INTEGER
! The minimal length of the workspace vector WORK.
! LWORK is calculated as follows:
! If WHTSVD == 1 ::
! If JOBZ == 'V', then
! LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)).
! If JOBZ == 'N' then
! LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)).
! Here LWORK_SVD = MAX(1,3*N+M,5*N) is the minimal
! workspace length of DGESVD.
! If WHTSVD == 2 ::
! If JOBZ == 'V', then
! LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N))
! If JOBZ == 'N', then
! LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N))
! Here LWORK_SVD = MAX(M, 5*N*N+4*N)+3*N*N is the
! minimal workspace length of DGESDD.
! If WHTSVD == 3 ::
! If JOBZ == 'V', then
! LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
! If JOBZ == 'N', then
! LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
! Here LWORK_SVD = N+M+MAX(3*N+1,
! MAX(1,3*N+M,5*N),MAX(1,N))
! is the minimal workspace length of DGESVDQ.
! If WHTSVD == 4 ::
! If JOBZ == 'V', then
! LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
! If JOBZ == 'N', then
! LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
! Here LWORK_SVD = MAX(7,2*M+N,6*N+2*N*N) is the
! minimal workspace length of DGEJSV.
! The above expressions are not simplified in order to
! make the usage of WORK more transparent, and for
! easier checking. In any case, LWORK >= 2.
! If on entry LWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! IWORK (workspace/output) INTEGER LIWORK-by-1 array
! Workspace that is required only if WHTSVD equals
! 2 , 3 or 4. (See the description of WHTSVD).
! If on entry LWORK =-1 or LIWORK=-1, then the
! minimal length of IWORK is computed and returned in
! IWORK(1). See the description of LIWORK.
!.....
! LIWORK (input) INTEGER
! The minimal length of the workspace vector IWORK.
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
! If on entry LIWORK = -1, then a workspace query is
! assumed and the procedure only computes the minimal
! and the optimal workspace lengths for both WORK and
! IWORK. See the descriptions of WORK and IWORK.
!.....
! INFO (output) INTEGER
! -i < 0 :: On entry, the i-th argument had an
! illegal value
! = 0 :: Successful return.
! = 1 :: Void input. Quick exit (M=0 or N=0).
! = 2 :: The SVD computation of X did not converge.
! Suggestion: Check the input data and/or
! repeat with different WHTSVD.
! = 3 :: The computation of the eigenvalues did not
! converge.
! = 4 :: If data scaling was requested on input and
! the procedure found inconsistency in the data
! such that for some column index i,
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
! to zero if JOBS=='C'. The computation proceeds
! with original or modified data and warning
! flag is set with INFO=4.
!.............................................................
!.............................................................
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
SSUM, XSCL1, XSCL2
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
LWRKEV, LWRSDD, LWRSVD, &
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
OLWORK
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
WNTEX, WNTREF, WNTRES, WNTVEC
CHARACTER :: JOBZL, T_OR_N
CHARACTER :: JSVOPT
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: AB(2,2), RDUMMY(2), RDUMMY2(2)
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) DLANGE, DLAMCH, DNRM2
EXTERNAL DLANGE, DLAMCH, DNRM2, IDAMAX
INTEGER IDAMAX
LOGICAL DISNAN, LSAME
EXTERNAL DISNAN, LSAME
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL DAXPY, DGEMM, DSCAL
EXTERNAL DGEEV, DGEJSV, DGESDD, DGESVD, DGESVDQ, &
DLACPY, DLASCL, DLASSQ, XERBLA
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC DBLE, INT, MAX, SQRT
!............................................................
!
! Test the input arguments
!
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
INFO = 0
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
.OR. LSAME(JOBZ,'F')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -4
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
INFO = -5
ELSE IF ( M < 0 ) THEN
INFO = -6
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
INFO = -7
ELSE IF ( LDX < M ) THEN
INFO = -9
ELSE IF ( LDY < M ) THEN
INFO = -11
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -12
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -13
ELSE IF ( LDZ < M ) THEN
INFO = -18
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
INFO = -21
ELSE IF ( LDW < N ) THEN
INFO = -23
ELSE IF ( LDS < N ) THEN
INFO = -25
END IF
!
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( N == 0 ) THEN
! Quick return. All output except K is void.
! INFO=1 signals the void input.
! In case of a workspace query, the default
! minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLWORK = MAX(2,N)
OLWORK = MAX(2,N)
IMINWR = 1
SELECT CASE ( WHTSVD )
CASE (1)
! The following is specified as the minimal
! length of WORK in the definition of DGESVD:
! MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
MLWORK = MAX(MLWORK,N + MWRSVD)
IF ( LQUERY ) THEN
CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, &
B, LDB, W, LDW, RDUMMY, -1, INFO1 )
LWRSVD = MAX( MWRSVD, INT( RDUMMY(1) ) )
OLWORK = MAX(OLWORK,N + LWRSVD)
END IF
CASE (2)
! The following is specified as the minimal
! length of WORK in the definition of DGESDD:
! MWRSDD = 3*MIN(M,N)*MIN(M,N) +
! MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
! IMINWR = 8*MIN(M,N)
MWRSDD = 3*MIN(M,N)*MIN(M,N) + &
MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
MLWORK = MAX(MLWORK,N + MWRSDD)
IMINWR = 8*MIN(M,N)
IF ( LQUERY ) THEN
CALL DGESDD( 'O', M, N, X, LDX, WORK, B, &
LDB, W, LDW, RDUMMY, -1, IWORK, INFO1 )
LWRSDD = MAX( MWRSDD, INT( RDUMMY(1) ) )
OLWORK = MAX(OLWORK,N + LWRSDD)
END IF
CASE (3)
!LWQP3 = 3*N+1
!LWORQ = MAX(N, 1)
!MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
!MWRSVQ = N + MAX( LWQP3, MWRSVD, LWORQ ) + MAX(M,2)
!MLWORK = N + MWRSVQ
!IMINWR = M+N-1
CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, WORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, RDUMMY, &
-1, RDUMMY2, -1, INFO1 )
IMINWR = IWORK(1)
MWRSVQ = INT(RDUMMY(2))
MLWORK = MAX(MLWORK,N+MWRSVQ+INT(RDUMMY2(1)))
IF ( LQUERY ) THEN
LWRSVQ = MAX( MWRSVQ, INT(RDUMMY(1)) )
OLWORK = MAX(OLWORK,N+LWRSVQ+INT(RDUMMY2(1)))
END IF
CASE (4)
JSVOPT = 'J'
!MWRSVJ = MAX( 7, 2*M+N, 6*N+2*N*N ) ! for JSVOPT='V'
MWRSVJ = MAX( 7, 2*M+N, 4*N+N*N, 2*N+N*N+6 )
MLWORK = MAX(MLWORK,N+MWRSVJ)
IMINWR = MAX( 3, M+3*N )
IF ( LQUERY ) THEN
OLWORK = MAX(OLWORK,N+MWRSVJ)
END IF
END SELECT
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
JOBZL = 'V'
ELSE
JOBZL = 'N'
END IF
! Workspace calculation to the DGEEV call
IF ( LSAME(JOBZL,'V') ) THEN
MWRKEV = MAX( 1, 4*N )
ELSE
MWRKEV = MAX( 1, 3*N )
END IF
MLWORK = MAX(MLWORK,N+MWRKEV)
IF ( LQUERY ) THEN
CALL DGEEV( 'N', JOBZL, N, S, LDS, REIG, &
IMEIG, W, LDW, W, LDW, RDUMMY, -1, INFO1 )
LWRKEV = MAX( MWRKEV, INT(RDUMMY(1)) )
OLWORK = MAX( OLWORK, N+LWRKEV )
END IF
!
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -29
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -27
END IF
!
IF( INFO /= 0 ) THEN
CALL XERBLA( 'DGEDMD', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
WORK(1) = MLWORK
WORK(2) = OLWORK
RETURN
END IF
!............................................................
!
OFL = DLAMCH('O')
SMALL = DLAMCH('S')
BADXY = .FALSE.
!
! <1> Optional scaling of the snapshots (columns of X, Y)
! ==========================================================
IF ( SCCOLX ) THEN
! The columns of X will be normalized.
! To prevent overflows, the column norms of X are
! carefully computed using DLASSQ.
K = 0
DO i = 1, N
!WORK(i) = DNRM2( M, X(1,i), 1 )
SCALE = ZERO
CALL DLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
END IF
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of X(:,i) overflows. First, X(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
! Next, the norm of X(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of X(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, X(1,i), M, INFO2 )
WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
WORK(i) = SCALE * ROOTSC
CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
X(1,i), M, INFO2 ) ! LAPACK CALL
! X(1:M,i) = (ONE/WORK(i)) * X(1:M,i) ! INTRINSIC
END IF
ELSE
WORK(i) = ZERO
K = K + 1
END IF
END DO
IF ( K == N ) THEN
! All columns of X are zero. Return error code -8.
! (the 8th input variable had an illegal value)
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
RETURN
END IF
DO i = 1, N
! Now, apply the same scaling to the columns of Y.
IF ( WORK(i) > ZERO ) THEN
CALL DSCAL( M, ONE/WORK(i), Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i) ! INTRINSIC
ELSE IF ( WORK(i) < ZERO ) THEN
CALL DLASCL( 'G', 0, 0, -WORK(i), &
ONE/DBLE(M), M, 1, Y(1,i), M, INFO2 ) ! LAPACK CALL
ELSE IF ( Y(IDAMAX(M, Y(1,i),1),i ) &
/= ZERO ) THEN
! X(:,i) is zero vector. For consistency,
! Y(:,i) should also be zero. If Y(:,i) is not
! zero, then the data might be inconsistent or
! corrupted. If JOBS == 'C', Y(:,i) is set to
! zero and a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
IF ( LSAME(JOBS,'C')) &
CALL DSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
END IF
END DO
END IF
!
IF ( SCCOLY ) THEN
! The columns of Y will be normalized.
! To prevent overflows, the column norms of Y are
! carefully computed using DLASSQ.
DO i = 1, N
!WORK(i) = DNRM2( M, Y(1,i), 1 )
SCALE = ZERO
CALL DLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -10
CALL XERBLA('DGEDMD',-INFO)
END IF
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of Y(:,i) overflows. First, Y(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
! Next, the norm of Y(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of Y(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, Y(1,i), M, INFO2 )
WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
WORK(i) = SCALE * ROOTSC
CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
Y(1,i), M, INFO2 ) ! LAPACK CALL
! Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i) ! INTRINSIC
END IF
ELSE
WORK(i) = ZERO
END IF
END DO
DO i = 1, N
! Now, apply the same scaling to the columns of X.
IF ( WORK(i) > ZERO ) THEN
CALL DSCAL( M, ONE/WORK(i), X(1,i), 1 ) ! BLAS CALL
! X(1:M,i) = (ONE/WORK(i)) * X(1:M,i) ! INTRINSIC
ELSE IF ( WORK(i) < ZERO ) THEN
CALL DLASCL( 'G', 0, 0, -WORK(i), &
ONE/DBLE(M), M, 1, X(1,i), M, INFO2 ) ! LAPACK CALL
ELSE IF ( X(IDAMAX(M, X(1,i),1),i ) &
/= ZERO ) THEN
! Y(:,i) is zero vector. If X(:,i) is not
! zero, then a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
END IF
END DO
END IF
!
! <2> SVD of the data snapshot matrix X.
! =====================================
! The left singular vectors are stored in the array X.
! The right singular vectors are in the array W.
! The array W will later on contain the eigenvectors
! of a Rayleigh quotient.
NUMRNK = N
SELECT CASE ( WHTSVD )
CASE (1)
CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, B, &
LDB, W, LDW, WORK(N+1), LWORK-N, INFO1 ) ! LAPACK CALL
T_OR_N = 'T'
CASE (2)
CALL DGESDD( 'O', M, N, X, LDX, WORK, B, LDB, W, &
LDW, WORK(N+1), LWORK-N, IWORK, INFO1 ) ! LAPACK CALL
T_OR_N = 'T'
CASE (3)
CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, WORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, WORK(N+MAX(2,M)+1),&
LWORK-N-MAX(2,M), WORK(N+1), MAX(2,M), INFO1) ! LAPACK CALL
CALL DLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'T'
CASE (4)
CALL DGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, WORK, Z, LDZ, W, LDW, &
WORK(N+1), LWORK-N, IWORK, INFO1 ) ! LAPACK CALL
CALL DLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'N'
XSCL1 = WORK(N+1)
XSCL2 = WORK(N+2)
IF ( XSCL1 /= XSCL2 ) THEN
! This is an exceptional situation. If the
! data matrices are not scaled and the
! largest singular value of X overflows.
! In that case DGEJSV can return the SVD
! in scaled form. The scaling factor can be used
! to rescale the data (X and Y).
CALL DLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
END IF
END SELECT
!
IF ( INFO1 > 0 ) THEN
! The SVD selected subroutine did not converge.
! Return with an error code.
INFO = 2
RETURN
END IF
!
IF ( WORK(1) == ZERO ) THEN
! The largest computed singular value of (scaled)
! X is zero. Return error code -8
! (the 8th input variable had an illegal value).
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
RETURN
END IF
!
!<3> Determine the numerical rank of the data
! snapshots matrix X. This depends on the
! parameters NRNK and TOL.
SELECT CASE ( NRNK )
CASE ( -1 )
K = 1
DO i = 2, NUMRNK
IF ( ( WORK(i) <= WORK(1)*TOL ) .OR. &
( WORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE ( -2 )
K = 1
DO i = 1, NUMRNK-1
IF ( ( WORK(i+1) <= WORK(i)*TOL ) .OR. &
( WORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE DEFAULT
K = 1
DO i = 2, NRNK
IF ( WORK(i) <= SMALL ) EXIT
K = K + 1
END DO
END SELECT
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
! snapshot data in the input matrix X.
!<4> Compute the Rayleigh quotient S = U^T * A * U.
! Depending on the requested outputs, the computation
! is organized to compute additional auxiliary
! matrices (for the residuals and refinements).
!
! In all formulas below, we need V_k*Sigma_k^(-1)
! where either V_k is in W(1:N,1:K), or V_k^T is in
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
IF ( LSAME(T_OR_N, 'N') ) THEN
DO i = 1, K
CALL DSCAL( N, ONE/WORK(i), W(1,i), 1 ) ! BLAS CALL
! W(1:N,i) = (ONE/WORK(i)) * W(1:N,i) ! INTRINSIC
END DO
ELSE
! This non-unit stride access is due to the fact
! that DGESVD, DGESVDQ and DGESDD return the
! transposed matrix of the right singular vectors.
!DO i = 1, K
! CALL DSCAL( N, ONE/WORK(i), W(i,1), LDW ) ! BLAS CALL
! ! W(i,1:N) = (ONE/WORK(i)) * W(i,1:N) ! INTRINSIC
!END DO
DO i = 1, K
WORK(N+i) = ONE/WORK(i)
END DO
DO j = 1, N
DO i = 1, K
W(i,j) = (WORK(N+i))*W(i,j)
END DO
END DO
END IF
!
IF ( WNTREF ) THEN
!
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
! for computing the refined Ritz vectors
! (optionally, outside DGEDMD).
CALL DGEMM( 'N', T_OR_N, M, K, N, ONE, Y, LDY, W, &
LDW, ZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
!
! At this point Z contains
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
! this is needed for computing the residuals.
! This matrix is returned in the array B and
! it can be used to compute refined Ritz vectors.
CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
CALL DGEMM( 'T', 'N', K, K, M, ONE, X, LDX, Z, &
LDZ, ZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
! At this point S = U^T * A * U is the Rayleigh quotient.
ELSE
! A * U(:,1:K) is not explicitly needed and the
! computation is organized differently. The Rayleigh
! quotient is computed more efficiently.
CALL DGEMM( 'T', 'N', K, N, M, ONE, X, LDX, Y, LDY, &
ZERO, Z, LDZ ) ! BLAS CALL
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC
! In the two DGEMM calls here, can use K for LDZ.
CALL DGEMM( 'N', T_OR_N, K, K, N, ONE, Z, LDZ, W, &
LDW, ZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
! At this point S = U^T * A * U is the Rayleigh quotient.
! If the residuals are requested, save scaled V_k into Z.
! Recall that V_k or V_k^T is stored in W.
IF ( WNTRES .OR. WNTEX ) THEN
IF ( LSAME(T_OR_N, 'N') ) THEN
CALL DLACPY( 'A', N, K, W, LDW, Z, LDZ )
ELSE
CALL DLACPY( 'A', K, N, W, LDW, Z, LDZ )
END IF
END IF
END IF
!
!<5> Compute the Ritz values and (if requested) the
! right eigenvectors of the Rayleigh quotient.
!
CALL DGEEV( 'N', JOBZL, K, S, LDS, REIG, IMEIG, W, &
LDW, W, LDW, WORK(N+1), LWORK-N, INFO1 ) ! LAPACK CALL
!
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
! quotient. Even in the case of complex spectrum, all
! computation is done in real arithmetic. REIG and
! IMEIG are the real and the imaginary parts of the
! eigenvalues, so that the spectrum is given as
! REIG(:) + sqrt(-1)*IMEIG(:). Complex conjugate pairs
! are listed at consecutive positions. For such a
! complex conjugate pair of the eigenvalues, the
! corresponding eigenvectors are also a complex
! conjugate pair with the real and imaginary parts
! stored column-wise in W at the corresponding
! consecutive column indices. See the description of Z.
! Also, see the description of DGEEV.
IF ( INFO1 > 0 ) THEN
! DGEEV failed to compute the eigenvalues and
! eigenvectors of the Rayleigh quotient.
INFO = 3
RETURN
END IF
!
! <6> Compute the eigenvectors (if requested) and,
! the residuals (if requested).
!
IF ( WNTVEC .OR. WNTEX ) THEN
IF ( WNTRES ) THEN
IF ( WNTREF ) THEN
! Here, if the refinement is requested, we have
! A*U(:,1:K) already computed and stored in Z.
! For the residuals, need Y = A * U(:,1;K) * W.
CALL DGEMM( 'N', 'N', M, K, K, ONE, Z, LDZ, W, &
LDW, ZERO, Y, LDY ) ! BLAS CALL
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
! This frees Z; Y contains A * U(:,1:K) * W.
ELSE
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
W, LDW, ZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
LDS, ZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
CALL DLACPY( 'A', M, K, Z, LDZ, Y, LDY )
IF ( WNTEX ) CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
ELSE IF ( WNTEX ) THEN
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
W, LDW, ZERO, S, LDS )
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
LDS, ZERO, B, LDB )
! The above call replaces the following two calls
! that were used in the developing-testing phase.
! CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
! LDS, ZERO, Z, LDZ)
! Save a copy of Z into B and free Z for holding
! the Ritz vectors.
! CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
!
! Compute the real form of the Ritz vectors
IF ( WNTVEC ) CALL DGEMM( 'N', 'N', M, K, K, ONE, X, LDX, W, LDW, &