forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdorgtsqr.f
305 lines (305 loc) · 9 KB
/
dorgtsqr.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
*> \brief \b DORGTSQR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DORGTSQR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
* $ INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
*> which are the first N columns of a product of real orthogonal
*> matrices of order M which are returned by DLATSQR
*>
*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
*>
*> See the documentation for DLATSQR.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The row block size used by DLATSQR to return
*> arrays A and T. MB > N.
*> (Note that if MB > M, then M is used instead of MB
*> as the row block size).
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The column block size used by DLATSQR to return
*> arrays A and T. NB >= 1.
*> (Note that if NB > N, then N is used instead of NB
*> as the column block size).
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*>
*> On entry:
*>
*> The elements on and above the diagonal are not accessed.
*> The elements below the diagonal represent the unit
*> lower-trapezoidal blocked matrix V computed by DLATSQR
*> that defines the input matrices Q_in(k) (ones on the
*> diagonal are not stored) (same format as the output A
*> below the diagonal in DLATSQR).
*>
*> On exit:
*>
*> The array A contains an M-by-N orthonormal matrix Q_out,
*> i.e the columns of A are orthogonal unit vectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is DOUBLE PRECISION array,
*> dimension (LDT, N * NIRB)
*> where NIRB = Number_of_input_row_blocks
*> = MAX( 1, CEIL((M-N)/(MB-N)) )
*> Let NICB = Number_of_input_col_blocks
*> = CEIL(N/NB)
*>
*> The upper-triangular block reflectors used to define the
*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
*> reflectors are stored in compact form in NIRB block
*> reflector sequences. Each of NIRB block reflector sequences
*> is stored in a larger NB-by-N column block of T and consists
*> of NICB smaller NB-by-NB upper-triangular column blocks.
*> (same format as the output T in DLATSQR).
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T.
*> LDT >= max(1,min(NB1,N)).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) DOUBLE PRECISION array, dimension (MAX(2,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= (M+NB)*N.
*> If LWORK = -1, then a workspace query is assumed.
*> The routine only calculates the optimal size of the WORK
*> array, returns this value as the first entry of the WORK
*> array, and no error message related to LWORK is issued
*> by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2019, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
*
* =====================================================================
SUBROUTINE DORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
$ INFO )
IMPLICIT NONE
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAMTSQR, DLASET, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
LQUERY = LWORK.EQ.-1
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
INFO = -2
ELSE IF( MB.LE.N ) THEN
INFO = -3
ELSE IF( NB.LT.1 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
INFO = -8
ELSE
*
* Test the input LWORK for the dimension of the array WORK.
* This workspace is used to store array C(LDC, N) and WORK(LWORK)
* in the call to DLAMTSQR. See the documentation for DLAMTSQR.
*
IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
INFO = -10
ELSE
*
* Set block size for column blocks
*
NBLOCAL = MIN( NB, N )
*
* LWORK = -1, then set the size for the array C(LDC,N)
* in DLAMTSQR call and set the optimal size of the work array
* WORK(LWORK) in DLAMTSQR call.
*
LDC = M
LC = LDC*N
LW = N * NBLOCAL
*
LWORKOPT = LC+LW
*
IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
INFO = -10
END IF
END IF
*
END IF
*
* Handle error in the input parameters and return workspace query.
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGTSQR', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
WORK( 1 ) = DBLE( LWORKOPT )
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N ).EQ.0 ) THEN
WORK( 1 ) = DBLE( LWORKOPT )
RETURN
END IF
*
* (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
* of M-by-M orthogonal matrix Q_in, which is implicitly stored in
* the subdiagonal part of input array A and in the input array T.
* Perform by the following operation using the routine DLAMTSQR.
*
* Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
* ( 0 ) 0 is a (M-N)-by-N zero matrix.
*
* (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
* on the diagonal and zeros elsewhere.
*
CALL DLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
*
* (1b) On input, WORK(1:LDC*N) stores ( I );
* ( 0 )
*
* On output, WORK(1:LDC*N) stores Q1_in.
*
CALL DLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
$ WORK, LDC, WORK( LC+1 ), LW, IINFO )
*
* (2) Copy the result from the part of the work array (1:M,1:N)
* with the leading dimension LDC that starts at WORK(1) into
* the output array A(1:M,1:N) column-by-column.
*
DO J = 1, N
CALL DCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
END DO
*
WORK( 1 ) = DBLE( LWORKOPT )
RETURN
*
* End of DORGTSQR
*
END