-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpage.py
executable file
·366 lines (311 loc) · 15.2 KB
/
page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import cv2
import math
import numpy
import subprocess
import os
import colors
import geometry as g
from box import Box
import text
from dimension import Dimension
from stopwatch import Stopwatch
import numpy
import matplotlib.pyplot as plt
import ntpath
import itertools # For mostcommon
import operator # For mostcommon
stopwatch = Stopwatch()
class Page:
def __init__(self, path, showSteps=False, saveDocstrum=False):
stopwatch.reset(path)
self.showSteps = showSteps
self.saveDocstrum = saveDocstrum
self.lines = []
greyscaleImage = cv2.imread(path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
self.orientations = []
self.dists = []
# PREPROCESSING START - NOISE REMOVAL
## Blurring
#greyscaleImage = cv2.medianBlur(greyscaleImage,3)
## Closing
kernel = numpy.ones((5,5),numpy.uint8)
## Opening
#kernel = numpy.ones((5,5),numpy.uint8)
#greyscaleImage = cv2.morphologyEx(greyscaleImage, cv2.MORPH_CLOSE, kernel)
#greyscaleImage = cv2.morphologyEx(greyscaleImage, cv2.MORPH_CLOSE, kernel)
#greyscaleImage = cv2.morphologyEx(greyscaleImage, cv2.MORPH_OPEN, kernel)
#greyscaleImage = cv2.morphologyEx(greyscaleImage, cv2.MORPH_CLOSE, kernel)
#self.display(greyscaleImage)
# PREPROCESSING STOP
colorImage = cv2.imread(path, cv2.CV_LOAD_IMAGE_COLOR)
if showSteps: self.display(greyscaleImage, title="Original Image")
#################################
# VERTICAL LINE REMOVAL - START #
#################################
'''
#blurredImage = cv2.GaussianBlur(greyscaleImage,(5,5),0)
#if showSteps: self.display(blurredImage, title="Gaussian-based Blurred Image")
blurredImage = cv2.bilateralFilter(greyscaleImage,9,95,95)
if showSteps: self.display(blurredImage, title="Bilateral-filter-based Blurred Image")
_, binaryImage = cv2.threshold(blurredImage,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#binaryImage = cv2.adaptiveThreshold(blurredImage, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
if showSteps: self.display(binaryImage, title="Otsu-based Binarized Image")
binaryImage = cv2.bitwise_not(binaryImage)
if showSteps: self.display(binaryImage, title="Inverted Image")
# kernel_size = (3,3)
verticalsize = binaryImage.shape[0] / 90;
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1,verticalsize))
verticalMask = cv2.erode(binaryImage, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Erosed Image")
verticalMask = cv2.dilate(verticalMask, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Dilated Image")
verticalMask = cv2.blur(verticalMask, (9,9))
if showSteps: self.display(verticalMask, title="Smoothened Vertical-line Candidates")
# Recursive
verticalMask = cv2.dilate(verticalMask, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Dilated Image_#2")
verticalMask = cv2.blur(verticalMask, (9,9))
if showSteps: self.display(verticalMask, title="Smoothened Vertical-line Candidates_#2")
verticalMask = cv2.dilate(verticalMask, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Dilated Image_#3")
verticalMask = cv2.blur(verticalMask, (9,9))
if showSteps: self.display(verticalMask, title="Smoothened Vertical-line Candidates_#3")
verticalMask = cv2.dilate(verticalMask, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Dilated Image_#4")
verticalMask = cv2.blur(verticalMask, (9,9))
if showSteps: self.display(verticalMask, title="Smoothened Vertical-line Candidates_#4")
verticalMask = cv2.dilate(verticalMask, kernel, (-1, -1))
if showSteps: self.display(verticalMask, title="MORP. Dilated Image_#5")
verticalMask = cv2.blur(verticalMask, (9,9))
if showSteps: self.display(verticalMask, title="Smoothened Vertical-line Candidates_#5")
#verticalMask = cv2.adaptiveThreshold(verticalMask,255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,15,-2)
#_, verticalMask = cv2.threshold(verticalMask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, verticalMask = cv2.threshold(verticalMask, 1, 255, cv2.THRESH_BINARY)
if showSteps: self.display(verticalMask, title="Thresholded Vertical-line Candidates")
verticalMask_mask = numpy.ones(binaryImage.shape[:2], dtype="uint8") * 255
verticalMask_contours,verticalMask_hierarchy = cv2.findContours(verticalMask, 1, 2)
for cnt in verticalMask_contours:
x,y,w,h = cv2.boundingRect(cnt)
if h>binaryImage.shape[0]/3:
cv2.drawContours(verticalMask_mask, [cnt], -1, 0, -1)
if showSteps: self.display(cv2.bitwise_not(verticalMask_mask), title="Final Vertical-lines")
binaryImage = cv2.bitwise_and(binaryImage, verticalMask_mask)
if showSteps: self.display(binaryImage, title="Fully Preprocessed Image")
'''
###############################
# VERTICAL LINE REMOVAL - END #
###############################
#_,binaryImage = cv2.threshold(greyscaleImage, cv2.THRESH_OTSU, colors.greyscale.WHITE, cv2.THRESH_BINARY)
_, binaryImage = cv2.threshold(greyscaleImage,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
binaryImage = cv2.bitwise_not(binaryImage)
if showSteps: self.display(binaryImage, title="Otsu-based Binarized Image")
self.characters = text.CharacterSet(binaryImage)
#self.display(binaryImage)
stopwatch.lap("got characters")
# words = [word, word, ..., word]
# words = [append, count, extend, index, insert, pop, remove, reverse, sort]
# word = [angles, characters, distances, findTuples, paint, registerChildCharacter]
# word = [char, char, ..., char]
# char = [nearestNeighbors, parentWord, x, y]
self.words = self.characters.getWords()
stopwatch.lap("got words & tuples")
print "Total ", len(self.words), " words are found."
#for idx, word in enumerate(self.words):
# print "[",idx,"] word:"
# for idx_char, character in enumerate(word.characters):
# print "**[", idx_char, "] char info.. ", "(",character.x,",",character.y,")"
#print "Tuple 1: (",self.words[1].angles[1], ", ", self.words[1].distances[1], ")"
self.buildDocstrum(path)
stopwatch.lap("built Docstrum")
#theta = self.words[1].angles
#r = self.words[1].distances
#ax = plt.subplot(111,polar=True)
#ax.scatter(theta,r)
#plt.show()
textlineImage = self.find_textline(colorImage)
self.display(textlineImage, title="Found textlines")
self.image = colorImage
stopwatch.lap("finished analysing page")
stopwatch.endRun()
#self.drawTextLine(self.words,colorImage)
#self.paint(self.image)
#self.display_textline(textlineImage)
#self.display(self.paint_textline(self.image))
print "Done."
def most_common(L):
# get an iterable of (item, iterable) pairs
SL = sorted((x, i) for i, x in enumerate(L))
# print 'SL:', SL
groups = itertools.groupby(SL, key=operator.itemgetter(0))
# auxiliary function to get "quality" for an item
def _auxfun(g):
item, iterable = g
count = 0
min_index = len(L)
for _, where in iterable:
count += 1
min_index = min(min_index, where)
# print 'item %r, count %r, minind %r' % (item, count, min_index)
return count, -min_index
# pick the highest-count/earliest item
return max(groups, key=_auxfun)[0]
def nnAngleHist(self, theta, path):
#print "theta from hist: ", theta
num_bins = 180
n, bins, patches = plt.hist(theta, num_bins, facecolor='blue', alpha=0.5)
if self.saveDocstrum:
plt.savefig(os.path.join(os.path.abspath("./docstrums"),"ds_nnAngle_" + ntpath.basename(path)))
plt.show()
def nnDistHist(self, dist, path):
num_bins = int(numpy.max(dist)-numpy.min(dist)+1)
#num_bins = 2*int(numpy.max(dist)+1)
#print("num_bins: ",num_bins)
#num_bins = 180
n, bins, patches = plt.hist(dist, num_bins, facecolor='orange', alpha=0.5)
if self.saveDocstrum:
plt.savefig(os.path.join(os.path.abspath("./docstrums"),"ds_nnDist_" + ntpath.basename(path)))
plt.show()
dist_peaks = []
n_copy = n.copy()
n_copy[::-1].sort() # sort in reverse way
THRESHOLD_DIST_WIDTH = 15
for i in xrange(num_bins):
_max_idx = numpy.where(n == n_copy[i]) # Find peak
if len(_max_idx[0])>1: # If ties,
_max = _max_idx[0][int(len(_max_idx[0])/2)] # get middle
else:
_max = _max_idx[0][0]
dist_peaks.append(int(_max+numpy.min(dist)))
print ("Distance peaks: %s" %dist_peaks)
'''
first_group_offset = -1
second_group_offset = -1
_min = _max = dist_peaks[0]
for i in xrange(len(dist_peaks)):
#print("Ele: %d" %dist_peaks[i])
if first_group_offset>-1 and second_group_offset>-1:
break
if _min <= dist_peaks[i] <= _max:
#print("...within [%d,%d]" %(_min,_max))
continue
elif abs(dist_peaks[i] -_min) <= THRESHOLD_DIST_WIDTH:
if dist_peaks[i]<_min:
_min = dist_peaks[i]
#print("...new min %d" %_min)
elif _max < dist_peaks[i]:
_max = dist_peaks[i]
#print("...new max %d" %_max)
continue
elif abs(_max - dist_peaks[i]) <= THRESHOLD_DIST_WIDTH:
if _max < dist_peaks[i]:
_max = dist_peaks[i]
#print("...new max %d" %_max)
elif dist_peaks[i]<_min:
_min = dist_peaks[i]
#print("...new min %d" %_min)
continue
else:
if first_group_offset == -1:
first_group_offset = i
#print("...found first group!")
_min = dist_peaks[i]
_max = dist_peaks[i]
else:
second_group_offset = i
print ("first group: %s and avg: %d" %(dist_peaks[:first_group_offset],numpy.mean(dist_peaks[:first_group_offset])))
print ("second group: %s and avg: %d" %(dist_peaks[first_group_offset:second_group_offset],numpy.mean(dist_peaks[first_group_offset:second_group_offset])))
'''
def buildDocstrum(self, path):
theta = []
theta_hist = []
dist_hist = []
r = []
sz = 1
for word in self.words:
for angle in word.angles:
#theta.append(numpy.pi+angle) # The second quadrant
#print "word.angle = <<", angle, ">>"
theta.append(1/2*numpy.pi-angle) # -pi/2 < x < pi/2 (1 and 4 quadrant)
theta.append(3/2*numpy.pi-angle) # pi/2 < x < -pi/2 (2 and 3 quadrant)
theta_hist.append(math.degrees(1/2*numpy.pi-angle))
for distance in word.distances:
r.append(distance)
r.append(distance)
dist_hist.append(distance)
ax = plt.subplot(111,polar=True)
#print("The peak of text-line orientation: ",self.most_common(theta_hist))
#print("shape of dist_hist: ",numpy.shape(dist_hist))
#print("The peak of within-line distance: ",self.most_common(dist_hist))
self.orientations = theta_hist
self.dists = dist_hist
ax.scatter(theta,r,sz)
if self.saveDocstrum:
plt.savefig(os.path.join(os.path.abspath("./docstrums"),"ds_" + ntpath.basename(path)))
if self.showSteps:
plt.show()
self.nnAngleHist(theta_hist,path)
#self.nnDistHist(dist_hist,path)
''' paint '''
''' color words '''
def paint(self, image):
#print len(self.words)
for word in self.words:
image = word.paint(image, colors.RED)
return image
def find_textline(self,image):
image = image.copy()
ratio = 4.0/8.0
#ratio = 4.0/4.0
for word in self.words:
#dir(word)
#word.angles
points = []
multiplier = 1
for character in word.characters:
#print "(",character.x,", ",character.y,")"
#print "nn: ", character.nearestNeighbors
points.append([character.x, character.y])
points.sort(key=lambda x: x[0])
#print("points:",points)
w = max(points,key=lambda x: x[0])[0]-min(points,key=lambda x: x[0])[0]
#print("w:",w)
h = max(points,key=lambda x: x[1])[1]-min(points,key=lambda x: x[1])[1]
#print(h)
dx, dy, x0, y0 = cv2.fitLine(numpy.array(points), cv2.cv.CV_DIST_L2, 0, 0.01, 0.01)
#print("dx:",dx,", dy:",dy,", x0:",x0,", y0:",y0)
#start = (int(x0 - dx*w*ratio), int(y0 - dy*w*ratio))
start = (int(min(points,key=lambda x: x[0])[0]),int((dy/dx)*(min(points,key=lambda x: x[0])[0]-x0)+y0))
#end = (int(x0 + dx*w*ratio), int(y0 + dy*w*ratio))
end = (int(max(points,key=lambda x: x[0])[0]),int((dy/dx)*(max(points,key=lambda x: x[0])[0]-x0)+y0))
#print(start,end)
self.lines.append(g.Line([start,end]))
cv2.line(image, start, end, (0,255,255),2)
return image
def save(self, path):
image = self.image.copy()
image = self.paint(image)
#image = self.paint_textline(image)
cv2.imwrite(path, image)
def display(self, image, boundingBox=(800,800), title='Image'):
stopwatch.pause()
if boundingBox:
maxDimension = Dimension(boundingBox[0], boundingBox[1])
displayDimension = Dimension(image.shape[1], image.shape[0])
displayDimension.fitInside(maxDimension)
image = cv2.resize(image, tuple(displayDimension))
cv2.namedWindow(title, cv2.CV_WINDOW_AUTOSIZE)
cv2.imshow(title, image)
cv2.waitKey()
stopwatch.unpause()
def show(self, boundingBox=None, title="Image"): #textImage
#image = numpy.zeros(self.image.shape, numpy.uint8)
image = self.image.copy()
image = self.paint(image)
self.display(image, boundingBox, title)
def extractWords(self, sourceImage):
image = sourceImage.copy()
image = threshold(image)
tempImageFile = os.path.join('src', 'tempImage.tiff')
tempTextFile = os.path.join('src', 'tempText')
mask = numpy.zeros(image.shape, numpy.uint8)
singleWord = numpy.zeros(image.shape, numpy.uint8)