-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeddc_retina_nonntk.py
964 lines (820 loc) · 49.4 KB
/
feddc_retina_nonntk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
"""
FedDC v1: global_client distilled data training using GM + global distilled data using GM
"""
import sys, os
base_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(base_path)
import torch
from torch import nn, optim
import time
import copy
# from fedbn_nets.models import DigitModel
import argparse
import numpy as np
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder, DatasetFolder
# import fedbn_data_utils as data_utils
from utils import get_loops, get_dataset, get_network, get_eval_pool, evaluate_synset, get_daparam, match_loss, get_time, TensorDataset, epoch, DiffAugment, ParamDiffAug
from pretraineddataset import PretrainedDataset, GetPretrained
from condensation import distribution_matching, distribution_matching_bn, gradient_matching, get_initial_normal
from torchvision.utils import save_image
import random
from loss_fn import Distance_loss
from PIL import Image
import csv
import math
import pandas as pd
import wandb
MEANS = [[0.5594, 0.2722, 0.0819], [0.7238, 0.3767, 0.1002], [0.5886, 0.2652, 0.1481], [0.7085, 0.4822, 0.3445]]
STDS = [[0.1378, 0.0958, 0.0343], [0.1001, 0.1057, 0.0503], [0.1147, 0.0937, 0.0461], [0.1663, 0.1541, 0.1066]]
# MEANS = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
# STDS = [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]
def get_label(file):
retVal = {}
lines = list(csv.reader(open(file)))
for line in lines[1:]:
retVal[line[0][:-1]] = line[-2]
return retVal
def get_label2(file):
retVal = {}
lines = list(csv.reader(open(file)))
for line in lines[1:]:
retVal[line[1]] = line[2]
return retVal
class DrishtiDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, transform, train=True):
self.CLASSES = 2
self.class_dict = {'Normal': 1, 'Glaucomatous': 0}
self.transform = transform
if train:
self.file = os.path.join(dataset_path, 'Drishti', 'Training')
else:
self.file = os.path.join(dataset_path, 'Drishti', 'Testing')
self.labels = get_label(os.path.join(dataset_path, 'Drishti', 'Drishti-GS1_diagnosis.csv'))
def __len__(self):
return len(os.listdir(self.file))
def __getitem__(self, index):
img_name = os.listdir(self.file)[index]
image_tensor = self.load_image(os.path.join(self.file,img_name))
label_tensor = torch.tensor(self.class_dict[self.labels[img_name[:-4]]], dtype=torch.long)
return image_tensor, label_tensor
def load_image(self, img_path):
if not os.path.exists(img_path):
print("IMAGE DOES NOT EXIST {}".format(img_path))
image = Image.open(img_path).convert('RGB')
# image = image.resize(dim)
image_tensor = self.transform(image)
return image_tensor
class RefugeDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, transform, test=True):
self.CLASSES = 2
self.class_dict = {'Normal': 1, 'Glaucomatous': 0}
self.transform = transform
if test:
# Test Dataset
self.file = os.path.join(dataset_path, 'REFUGE_segmented', 'Test')
self.labels = get_label2(os.path.join(dataset_path, 'REFUGE_segmented', 'Glaucoma_label_and_Fovea_location.csv'))
else:
# Validation Dataset
self.file = os.path.join(dataset_path, 'REFUGE_segmented', 'Validation')
self.labels = get_label2(os.path.join(dataset_path, 'REFUGE_segmented', 'Fovea_locations.csv'))
def __len__(self):
return len(os.listdir(self.file))
def __getitem__(self, index):
img_name = os.listdir(self.file)[index]
image_tensor = self.load_image(os.path.join(self.file,img_name))
label_tensor = torch.tensor(int(self.labels[img_name]), dtype=torch.long)
return image_tensor, label_tensor
def load_image(self, img_path):
if not os.path.exists(img_path):
print("IMAGE DOES NOT EXIST {}".format(img_path))
image = Image.open(img_path).convert('RGB')
image_tensor = self.transform(image)
return image_tensor
def prepare_data(args, im_size):
# data_base_path = './data/segmented_retina'
data_base_path = './data/retina_balanced'
# transform_train = transforms.Compose([
# transforms.Resize([96, 96]),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
# transforms.ToTensor(),
# ])
transform_unnormalized = transforms.Compose([
transforms.Resize(im_size),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
transforms.ToTensor()
])
# Drishti
transform_drishti = transforms.Compose([
transforms.Resize(im_size),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
transforms.ToTensor(),
transforms.Normalize(MEANS[0], STDS[0])
])
# drishti_trainset = DrishtiDataset(dataset_path=data_base_path,transform=transform_drishti)
# drishti_testset = DrishtiDataset(dataset_path=data_base_path,transform=transform_drishti, train=False)
drishti_train_path = os.path.join(data_base_path, 'Drishti', 'Training')
drishti_test_path = os.path.join(data_base_path, 'Drishti', 'Testing')
unnormalized_drishti_trainset = ImageFolder(drishti_train_path, transform=transform_unnormalized)
drishti_trainset = ImageFolder(drishti_train_path, transform=transform_drishti)
drishti_testset = ImageFolder(drishti_test_path, transform=transform_drishti)
# drishti_concated = torch.utils.data.ConcatDataset([drishti_trainset, drishti_testset])
# kaggle
transform_kaggle = transforms.Compose([
transforms.Resize(im_size),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
transforms.ToTensor(),
transforms.Normalize(MEANS[1], STDS[1])
])
kaggle_train_path = os.path.join(data_base_path, 'kaggle_arima', 'Training')
kaggle_test_path = os.path.join(data_base_path, 'kaggle_arima', 'Testing')
unnormalized_kaggle_trainset = ImageFolder(kaggle_train_path, transform=transform_unnormalized)
kaggle_trainset = ImageFolder(kaggle_train_path, transform=transform_kaggle)
kaggle_testset = ImageFolder(kaggle_test_path, transform=transform_kaggle)
# kaggle_concated = ImageFolder(kaggle_train_path, transform=transform_kaggle, target_transform=torch.tensor)
# print(kaggle_concated.class_to_idx)
# RIM
transform_rim = transforms.Compose([
transforms.Resize(im_size),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
transforms.ToTensor(),
transforms.Normalize(MEANS[2], STDS[2])
])
# rim_train_path = os.path.join(data_base_path, 'RIM-ONE_DL_images', 'partitioned_by_hospital', 'training_set')
# rim_test_path = os.path.join(data_base_path, 'RIM-ONE_DL_images', 'partitioned_by_hospital', 'test_set')
rim_train_path = os.path.join(data_base_path, 'RIM', 'Training')
rim_test_path = os.path.join(data_base_path, 'RIM', 'Testing')
unnormalized_rim_trainset = ImageFolder(rim_train_path, transform=transform_unnormalized)
rim_trainset = ImageFolder(rim_train_path, transform=transform_rim)
rim_testset = ImageFolder(rim_test_path, transform=transform_rim)
# rim_concated = torch.utils.data.ConcatDataset([rim_trainset,rim_testset])
# print(rim_trainset.class_to_idx)
# print(rim_testset.class_to_idx)
# refuge
transform_refuge = transforms.Compose([
transforms.Resize(im_size),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation((-30,30)),
transforms.ToTensor(),
transforms.Normalize(MEANS[3], STDS[3])
])
refuge_train_path = os.path.join(data_base_path, 'REFUGE', 'Training')
refuge_test_path = os.path.join(data_base_path, 'REFUGE', 'Testing')
unnormalized_refuge_trainset = ImageFolder(refuge_train_path, transform=transform_unnormalized)
refuge_trainset = ImageFolder(refuge_train_path, transform=transform_refuge)
refuge_testset = ImageFolder(refuge_test_path, transform=transform_refuge)
# print(refuge_trainset.class_to_idx)
# refuge_valset = RefugeDataset(data_base_path, transform=transform_refuge, test=False)
# refuge_testset = RefugeDataset(data_base_path, transform=transform_refuge)
# refuge_concated = torch.utils.data.ConcatDataset([refuge_trainset,refuge_valset,refuge_testset])
# dataset_length = len(drishti_concated)
# dataset_length_client = int(dataset_length * 0.8)
# split_length = [dataset_length_client, dataset_length-dataset_length_client]
# drishti_trainset, drishti_testset = torch.utils.data.random_split(
# dataset=drishti_concated,
# lengths=split_length,
# generator=torch.manual_seed(0)
# )
# dataset_length = len(kaggle_concated)
# dataset_length_client = int(dataset_length * 0.8)
# split_length = [dataset_length_client, dataset_length-dataset_length_client]
# kaggle_trainset, kaggle_testset = torch.utils.data.random_split(
# dataset=kaggle_concated,
# lengths=split_length,
# generator=torch.manual_seed(0)
# )
# dataset_length = len(rim_concated)
# dataset_length_client = int(dataset_length * 0.8)
# split_length = [dataset_length_client, dataset_length-dataset_length_client]
# rim_trainset, rim_testset = torch.utils.data.random_split(
# dataset=rim_concated,
# lengths=split_length,
# generator=torch.manual_seed(0)
# )
# dataset_length = len(refuge_concated)
# dataset_length_client = int(dataset_length * 0.8)
# split_length = [dataset_length_client, dataset_length-dataset_length_client]
# refuge_trainset, refuge_testset = torch.utils.data.random_split(
# dataset=refuge_concated,
# lengths=split_length,
# generator=torch.manual_seed(0)
# )
#####################################
Drishti_train_loader = torch.utils.data.DataLoader(drishti_trainset, batch_size=args.batch, shuffle=True)
Drishti_test_loader = torch.utils.data.DataLoader(drishti_testset, batch_size=args.batch, shuffle=False)
kaggle_train_loader = torch.utils.data.DataLoader(kaggle_trainset, batch_size=args.batch, shuffle=True)
kaggle_test_loader = torch.utils.data.DataLoader(kaggle_testset, batch_size=args.batch, shuffle=False)
rim_train_loader = torch.utils.data.DataLoader(rim_trainset, batch_size=args.batch, shuffle=True)
rim_test_loader = torch.utils.data.DataLoader(rim_testset, batch_size=args.batch, shuffle=False)
refuge_train_loader = torch.utils.data.DataLoader(refuge_trainset, batch_size=args.batch, shuffle=True)
refuge_test_loader = torch.utils.data.DataLoader(refuge_testset, batch_size=args.batch, shuffle=False)
train_loaders = [Drishti_train_loader, kaggle_train_loader, rim_train_loader, refuge_train_loader]
test_loaders = [Drishti_test_loader, kaggle_test_loader, rim_test_loader, refuge_test_loader]
unnormalized_train_datasets = [unnormalized_drishti_trainset, unnormalized_kaggle_trainset, unnormalized_rim_trainset, unnormalized_refuge_trainset]
train_datasets = [drishti_trainset, kaggle_trainset, rim_trainset, refuge_trainset]
test_datasets = [drishti_testset, kaggle_testset, rim_testset, refuge_testset]
min_data_len = min(len(drishti_testset), len(kaggle_testset), len(rim_testset), len(refuge_testset))
# min_data_len = min(len(kaggle_testset), len(rim_testset), len(refuge_testset))
shuffled_idxes = [list(range(0, len(test_datasets[idx]))) for idx in range(len(test_datasets))]
for idx in range(len(shuffled_idxes)):
random.shuffle(shuffled_idxes[idx])
concated_test_set = [torch.utils.data.Subset(test_datasets[idx], shuffled_idxes[idx][:min_data_len]) for idx in range(len(test_datasets))]
concated_test_set = torch.utils.data.ConcatDataset(concated_test_set)
print(len(drishti_testset), len(kaggle_testset), len(rim_testset), len(refuge_testset), len(concated_test_set))
concated_test_loader = torch.utils.data.DataLoader(concated_test_set, batch_size=args.batch, shuffle=False)
return train_datasets, test_datasets, train_loaders, test_loaders, concated_test_loader, unnormalized_train_datasets
def train(model, train_loader, optimizer, loss_fun, client_num, device):
model.train()
num_data = 0
correct = 0
loss_all = 0
train_iter = iter(train_loader)
for step in range(len(train_iter)):
optimizer.zero_grad()
x, y = next(train_iter)
num_data += y.size(0)
x = x.to(device).float()
y = y.to(device).long()
output = model(x)
loss = loss_fun(output, y)
loss.backward()
loss_all += loss.item()
optimizer.step()
pred = output.data.max(1)[1]
correct += pred.eq(y.view(-1)).sum().item()
return loss_all/len(train_iter), correct/num_data
def train_vhl(model, optimizer, loss_fun, client_num, device, train_loader, server_images, server_labels, distance_loss, lambda_sim, imgs, server_imgs, ipc, reg_loss):
model.train()
num_data = 0
correct = 0
loss_all = 0
align_loss_all = 0
train_iter = iter(train_loader)
embed = model.module.embed if torch.cuda.device_count()>1 else model.embed #GPU parallel
for step in range(len(train_iter)):
optimizer.zero_grad()
x, y = next(train_iter)
num_data += y.size(0)
x = x.to(device).float()
y = y.to(device).long()
output = model(x)
classification_loss = loss_fun(output, y)
# similarity model update
# Constrastive
if reg_loss == 'contrastive':
client_features = embed(x)
server_features = embed(server_images)
align_loss = distance_loss(client_features, server_features, y, server_labels)
# MMD
elif reg_loss == 'mmd':
for c in range(num_classes):
client_img_tmp = imgs[c*ipc:(c+1)*ipc]
server_img_tmp = server_imgs[c*(ipc):(c+1)*(ipc)]
emb_client = embed(client_img_tmp)
emb_server = embed(server_img_tmp)
align_loss = torch.sum((torch.mean(emb_server, dim=0) - torch.mean(emb_client, dim=0))**2)
# l2 norm
elif reg_loss == 'l2norm':
for c in range(num_classes):
client_img_tmp = imgs[c*ipc:(c+1)*ipc]
server_img_tmp = server_imgs[c*(ipc):(c+1)*(ipc)]
emb_client = embed(client_img_tmp)
emb_server = embed(server_img_tmp)
align_loss = distance_loss(emb_client, emb_server)
else:
raise NotImplementedError
loss = classification_loss + lambda_sim * align_loss
loss.backward()
loss_all += loss.item()
align_loss_all += align_loss.item()
optimizer.step()
pred = output.data.max(1)[1]
correct += pred.eq(y.view(-1)).sum().item()
return loss_all/len(train_iter), correct/num_data, align_loss_all/len(train_iter)
def train_fedprox(args, model, server_model, train_loader, optimizer, loss_fun, client_num, device):
model.train()
num_data = 0
correct = 0
loss_all = 0
train_iter = iter(train_loader)
for step in range(len(train_iter)):
optimizer.zero_grad()
x, y = next(train_iter)
num_data += y.size(0)
x = x.to(device).float()
y = y.to(device).long()
output = model(x)
loss = loss_fun(output, y)
#########################we implement FedProx Here###########################
# referring to https://github.com/IBM/FedMA/blob/4b586a5a22002dc955d025b890bc632daa3c01c7/main.py#L819
if step>0:
w_diff = torch.tensor(0., device=device)
for w, w_t in zip(server_model.parameters(), model.parameters()):
w_diff += torch.pow(torch.norm(w - w_t), 2)
loss += args.mu / 2. * w_diff
#############################################################################
loss.backward()
loss_all += loss.item()
optimizer.step()
pred = output.data.max(1)[1]
correct += pred.eq(y.view(-1)).sum().item()
return loss_all/len(train_iter), correct/num_data
def test(model, test_loader, loss_fun, device):
model.eval()
test_loss = 0
correct = 0
targets = []
for data, target in test_loader:
data = data.to(device).float()
target = target.to(device).long()
targets.append(target.detach().cpu().numpy())
output = model(data)
test_loss += loss_fun(output, target).item()
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
return test_loss/len(test_loader), correct /len(test_loader.dataset)
################# Key Function ########################
def communication(args, server_model, models, client_weights):
with torch.no_grad():
# aggregate params
if args.mode.lower() == 'fedbn':
for key in server_model.state_dict().keys():
if 'bn' not in key:
temp = torch.zeros_like(server_model.state_dict()[key], dtype=torch.float32)
for client_idx in range(client_num):
temp += client_weights[client_idx] * models[client_idx].state_dict()[key]
server_model.state_dict()[key].data.copy_(temp)
for client_idx in range(client_num):
models[client_idx].state_dict()[key].data.copy_(server_model.state_dict()[key])
else:
for key in server_model.state_dict().keys():
# num_batches_tracked is a non trainable LongTensor and
# num_batches_tracked are the same for all clients for the given datasets
if 'num_batches_tracked' in key:
server_model.state_dict()[key].data.copy_(models[0].state_dict()[key])
else:
temp = torch.zeros_like(server_model.state_dict()[key])
for client_idx in range(len(client_weights)):
temp += client_weights[client_idx] * models[client_idx].state_dict()[key]
server_model.state_dict()[key].data.copy_(temp)
for client_idx in range(len(client_weights)):
models[client_idx].state_dict()[key].data.copy_(server_model.state_dict()[key])
return server_model, models
def get_images(images_all, indices_class, c, n): # get random n images from class c
idx_shuffle = np.random.permutation(indices_class[c])[:n]
return images_all[idx_shuffle]
# def compute_img_mean_std(img_loader):
# mean = 0.
# std = 0.
# nb_samples = 0.
# for i, (img, label) in enumerate(img_loader):
# batch_samples = img.size(0)
# img = img.view(batch_samples, img.size(1), -1)
# mean += img.mean(2).sum(0)
# std += img.std(2).sum(0)
# nb_samples += batch_samples
# mean /= nb_samples
# std /= nb_samples
# print("normMean = {}".format(mean))
# print("normStd = {}".format(std))
# return mean, std
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device:', device)
parser = argparse.ArgumentParser()
parser.add_argument('--log', action='store_true', help ='whether to make a log')
parser.add_argument('--test', action='store_true', help ='test the pretrained model')
parser.add_argument('--percent', type = float, default= 0.1, help ='percentage of dataset to train')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--batch', type = int, default= 32, help ='batch size')
parser.add_argument('--iters', type = int, default=100, help = 'iterations for communication')
parser.add_argument('--wk_iters', type = int, default=1, help = 'optimization iters in local worker between communication')
parser.add_argument('--mode', type = str, default='feddc', help='fedavg | fedprox | fedbn | feddc')
parser.add_argument('--mu', type=float, default=1e-2, help='The hyper parameter for fedprox')
parser.add_argument('--save_path', type = str, default='./checkpoint/retina', help='path to save the checkpoint')
parser.add_argument('--resume', action='store_true', help ='resume training from the save path checkpoint')
parser.add_argument('--ipc', type = int, default=10, help = 'images per class')
parser.add_argument('--lr_img', type = float, default=1, help = 'learning rate for img')
parser.add_argument('--dis_metric', type = str, default='ours', help='matching method')
parser.add_argument('--model', type=str, default='ConvNet', help='model')
parser.add_argument('--lambda_sim', type = float, default=0.1, help = 'lambda for heterogeneous training')
parser.add_argument('--seed', type = int, default=1234, help = 'random seeds')
parser.add_argument('--ci_iter', type = int, default=200, help = 'client image update epoch')
parser.add_argument('--si_iter', type = int, default=2000, help = 'server image update epoch')
parser.add_argument('--ci_tgap', type = int, default=5, help = 'client image training frequency')
parser.add_argument('--si_tgap', type = int, default=5, help = 'server image training frequency')
parser.add_argument('--image_update_times', type = int, default=10, help = 'condensed image update times during whole training')
parser.add_argument('--init', type = str, default='normal', help='initialization method for dc')
parser.add_argument('--reg_loss', type = str, default='contrastive', help='regularization loss: contrastive|l2norm|mmd')
args = parser.parse_args()
args.device = device
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
exp_folder = 'federated_retina'
args.save_path = os.path.join(args.save_path, exp_folder)
# log = args.log
# if log:
# log_path = os.path.join('../logs/digits/', exp_folder)
# if not os.path.exists(log_path):
# os.makedirs(log_path)
# logfile = open(os.path.join(log_path,'{}.log'.format(args.mode)), 'a')
# logfile.write('==={}===\n'.format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
# logfile.write('===Setting===\n')
# logfile.write(' lr: {}\n'.format(args.lr))
# logfile.write(' batch: {}\n'.format(args.batch))
# logfile.write(' iters: {}\n'.format(args.iters))
# logfile.write(' wk_iters: {}\n'.format(args.wk_iters))
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
SAVE_PATH = os.path.join(args.save_path, '{}'.format(args.mode))
if not os.path.exists(SAVE_PATH):
os.makedirs(SAVE_PATH)
num_classes, channel, im_size, image_batch = 2, 3, (96, 96), 256
client_iteration, server_iteration, warmup_iteration = args.ci_iter, args.si_iter, 10000
# server_model = DigitModel().to(device)
server_model = get_network(args.model, channel, num_classes, im_size).to(args.device) # get a random model.to(device)
loss_fun = nn.CrossEntropyLoss()
# prepare the data
train_datasets, test_datasets, train_loaders, test_loaders, concated_test_loader, unnormalized_train_datasets = prepare_data(args, im_size)
# print([len(trainset) for trainset in train_datasets])
# print([len(testset) for testset in test_datasets])
# sys.exit()
# name of each client dataset
datasets = ['Drishti', 'Kaggle', 'Rim', 'Refuge']
# federated setting
client_num = len(datasets)
client_weights = [1/client_num for i in range(client_num)]
models = [copy.deepcopy(server_model).to(device) for idx in range(client_num)]
# make save dictionary
train_loss_save, train_acc_save, val_loss_save, val_acc_save, test_loss_save, test_acc_save, reg_loss_save, global_loss_save, global_acc_save = {}, {}, {}, {}, {}, {}, {}, {}, {}
for client_idx in range(client_num):
train_loss_save[f'Client{client_idx}'] = []
train_acc_save[f'Client{client_idx}'] = []
val_loss_save[f'Client{client_idx}'] = []
val_acc_save[f'Client{client_idx}'] = []
reg_loss_save[f'Client{client_idx}'] = []
global_loss_save[f'Client{client_idx}'] = []
global_acc_save[f'Client{client_idx}'] = []
train_loss_save[f'mean'] = []
train_acc_save[f'mean'] = []
val_loss_save[f'mean'] = []
val_acc_save[f'mean'] = []
test_loss_save[f'GLobal Held Out'] = []
test_acc_save[f'GLobal Held Out'] = []
reg_loss_save[f'mean'] = []
global_loss_save[f'mean'] = []
global_acc_save[f'mean'] = []
if args.test:
server_model.load_state_dict(torch.load(f'{SAVE_PATH}/server_model.pt'))
for client_idx in range(client_num):
models[client_idx].load_state_dict(torch.load(f'{SAVE_PATH}/model_{client_idx}.pt'))
# testing on heldout global test dataset
for test_idx, test_loader in enumerate(test_loaders):
_, test_acc = test(models[test_idx], test_loader, loss_fun, device)
print(' {:<11s}| Test Acc: {:.4f}'.format(datasets[test_idx], test_acc))
# testing on heldout global test dataset
test_loss, test_acc = test(server_model, concated_test_loader, loss_fun, device)
print(' {:<11s}| Test Loss: {:.4f} | Test Acc: {:.4f}'.format('Global Held Out', test_loss, test_acc))
else:
wandb.init(project='feddc_retina')
wandb.config = {'mode': args.mode,
'model': args.model,
'init': args.init,
'lambda': args.lambda_sim}
''' Warm Up: Condense local data before FL'''
# get initial global and local images
if args.init == 'normal':
_, _, server_image_syn, server_label_syn = get_initial_normal(unnormalized_train_datasets, im_size, num_classes, client_num, args.ipc)
image_syns, label_syns, _, _ = get_initial_normal(train_datasets, im_size, num_classes, client_num, args.ipc)
elif args.init == 'noise':
server_image_syn = torch.randn(size=(num_classes*args.ipc, channel, im_size[0], im_size[1]), dtype=torch.float, requires_grad=True, device=args.device)
server_label_syn = torch.tensor([np.ones(args.ipc)*i for i in range(num_classes)], dtype=torch.long, requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
image_syns, label_syns = [], []
image_syns = [copy.deepcopy(server_image_syn).to(args.device) for idx in range(client_num)]
label_syns = [copy.deepcopy(server_label_syn).to(args.device) for idx in range(client_num)]
else:
raise NotImplementedError
''' Pre-processing clients' data '''
# from pre-trained
pretrained_img_path = f'./pretrained/retina'
if os.path.isfile(f'{pretrained_img_path}/{args.model}_{args.ipc}_{args.init}_client0_iter0.png'):
path_tmp = f'{pretrained_img_path}/{args.model}_{args.ipc}_{args.init}'
image_syns = GetPretrained(path=path_tmp, means=MEANS, stds=STDS, im_size=im_size, num_classes=num_classes, client_num=client_num, device=args.device, ipc = args.ipc, padding = 2)
for i, local_syn_images in enumerate(image_syns):
# for ch in range(channel):
# local_syn_images[:, ch] = (local_syn_images[:, ch] - MEANS[i][ch]) /STDS[i][ch]
local_syn_images.requires_grad = True
# local DM
else:
for client_idx in range(client_num):
# organize the real dataset
images_all = []
labels_all = []
indices_class = [[] for c in range(num_classes)]
images_all = [torch.unsqueeze(train_datasets[client_idx][i][0], dim=0) for i in range(len(train_datasets[client_idx]))]
labels_all = [train_datasets[client_idx][i][1] for i in range(len(train_datasets[client_idx]))]
for i, lab in enumerate(labels_all):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to(args.device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=args.device)
# for c in range(num_classes):
# print('client %d trainset: class c = %d: %d real images'%(client_idx, c, len(indices_class[c])))
# images_all__ = []
# labels_all__ = []
# indices_class__ = [[] for c in range(num_classes)]
# images_all__ = [torch.unsqueeze(test_datasets[client_idx][i][0], dim=0) for i in range(len(test_datasets[client_idx]))]
# labels_all__ = [test_datasets[client_idx][i][1] for i in range(len(test_datasets[client_idx]))]
# for i, lab in enumerate(labels_all__):
# indices_class__[lab].append(i)
# for c in range(num_classes):
# print('client %d testset: class c = %d: %d real images'%(client_idx, c, len(indices_class__[c])))
# setup optimizer
optimizer_img = torch.optim.SGD([image_syns[client_idx], ], lr=args.lr_img, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
for it in range(warmup_iteration):
loss_avg = 0
# get real images for each class
image_real = [get_images(images_all, indices_class, c, image_batch) for c in range(num_classes)]
if 'BN' in args.model:
loss, image_syns[client_idx] = distribution_matching_bn(image_real, image_syns[client_idx], optimizer_img, channel, num_classes, im_size, args.ipc)
else:
loss, image_syns[client_idx] = distribution_matching(image_real, image_syns[client_idx], optimizer_img, channel, num_classes, im_size, args.ipc)
# report averaged loss
loss_avg += loss
loss_avg /= num_classes
if it%100 == 0:
print('%s Initialization:\t client = %2d, iter = %05d, loss = %.4f' % (get_time(), client_idx, it, loss_avg))
''' start training with condensed images '''
local_time = 0
global_time = 0
start_time = time.time()
for a_iter in range(0, args.iters+1):
# # slow down lr for gradient matching
# if a_iter < args.si_tgap*args.image_update_times+1:
# model_lr = args.lr/10
# else:
# model_lr = args.lr
model_lr = args.lr
## Save distilled data for future initialization
if a_iter == 0:
# save local distilled data
data_path = f'{pretrained_img_path}'
if not os.path.exists(data_path):
os.makedirs(data_path)
for i, local_syn_images in enumerate(image_syns):
save_name = os.path.join(data_path, f'{args.model}_{args.ipc}_{args.init}_client{i}_iter{a_iter}.png')
image_syn_vis = copy.deepcopy(local_syn_images.detach().cpu())
for ch in range(channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * STDS[i][ch] + MEANS[i][ch]
image_syn_vis[image_syn_vis<0] = 0.0
image_syn_vis[image_syn_vis>1] = 1.0
save_image(image_syn_vis, save_name, nrow=args.ipc, normalize=True) # Trying normalize = True/False may get better visual effects.
if ((a_iter+1)%args.si_tgap == 0 or a_iter == 0) and a_iter < args.si_tgap*args.image_update_times+1:
# if a_iter==199:
# save global distilled data
data_path = f'{SAVE_PATH}/distilled_data'
if not os.path.exists(data_path):
os.makedirs(data_path)
save_name = os.path.join(data_path, f'{args.model}_{args.ipc}_{args.init}_global_iter{a_iter}.png')
image_syn_vis = copy.deepcopy(server_image_syn.detach().cpu())
mean_global = np.mean(MEANS, axis=0)
std_global = np.mean(STDS, axis=0)
for ch in range(channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * std_global[ch] + mean_global[ch]
image_syn_vis[image_syn_vis<0] = 0.0
image_syn_vis[image_syn_vis>1] = 1.0
save_image(image_syn_vis, save_name, nrow=args.ipc) # Trying normalize = True/False may get better visual effects.
if ((a_iter+1)%args.ci_tgap == 0 or a_iter == 0) and a_iter < args.ci_tgap*args.image_update_times+1:
# save local distilled data
for i, local_syn_images in enumerate(image_syns):
save_name = os.path.join(data_path, f'{args.model}_{args.ipc}_{args.init}_client{i}_iter{a_iter}.png')
image_syn_vis = copy.deepcopy(local_syn_images.detach().cpu())
for ch in range(channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * STDS[i][ch] + MEANS[i][ch]
image_syn_vis[image_syn_vis<0] = 0.0
image_syn_vis[image_syn_vis>1] = 1.0
save_image(image_syn_vis, save_name, nrow=args.ipc) # Trying normalize = True/False may get better visual effects.
if a_iter == args.iters:
break
## Update local condensed data with DM
# if a_iter > 0 and a_iter < 10:
# if a_iter > 0 and a_iter%10==0:
# if a_iter > 0 and a_iter%10==0 and a_iter<101:
if a_iter > 0 and a_iter%args.ci_tgap==0 and a_iter < args.ci_tgap*args.image_update_times+1:
tstart = time.time()
for client_idx in range(client_num):
# organize the real dataset
images_all = []
labels_all = []
indices_class = [[] for c in range(num_classes)]
images_all = [torch.unsqueeze(train_datasets[client_idx][i][0], dim=0) for i in range(len(train_datasets[client_idx]))]
labels_all = [train_datasets[client_idx][i][1] for i in range(len(train_datasets[client_idx]))]
for i, lab in enumerate(labels_all):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to(args.device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=args.device)
# setup optimizer
optimizer_img = torch.optim.SGD([image_syns[client_idx], ], lr=args.lr_img, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
# get global condensed images as ref
image_server = [copy.deepcopy(server_image_syn[c*(args.ipc):(c+1)*(args.ipc)].detach()).to(args.device) for c in range(num_classes)]
for it in range(client_iteration):
loss_avg = 0
# get real images for each class
image_real = [get_images(images_all, indices_class, c, image_batch) for c in range(num_classes)]
# loss, image_syns[client_idx], sc_loss = distribution_matching(image_real, image_syns[client_idx], optimizer_img, channel, num_classes, im_size, args.ipc, image_server=image_server)
if 'BN' in args.model:
loss, image_syns[client_idx] = distribution_matching_bn(image_real, image_syns[client_idx], optimizer_img, channel, num_classes, im_size, args.ipc, net=server_model)
else:
loss, image_syns[client_idx] = distribution_matching(image_real, image_syns[client_idx], optimizer_img, channel, num_classes, im_size, args.ipc, net=server_model)
# report averaged loss
loss_avg += loss
loss_avg /= num_classes
# if it == iteration-1:
if (it+1)%100==0:
print('%s Local update:\t client = %2d, Total iter:%05d, iter = %05d, loss = %.4f' % (get_time(), client_idx, a_iter, it+1, loss_avg))
local_time += time.time() - tstart
print(f'Local synthetic images update time per iteration: {time.time() - tstart}')
## Ordinary local training with condensed images
tstart = time.time()
optimizers = [optim.SGD(params=models[idx].parameters(), lr=model_lr) for idx in range(client_num)]
if args.reg_loss == 'contrastive':
distance_loss = Distance_loss(device=args.device)
elif args.reg_loss == 'l2norm':
distance_loss = nn.MSELoss()
elif args.reg_loss == 'mmd':
distance_loss = None
else:
raise NotImplementedError
# deep copy for any unawared modification
image_server_tmp = copy.deepcopy(server_image_syn.detach().to(args.device))
label_server_tmp = copy.deepcopy(server_label_syn.detach().to(args.device))
image_syn_evals = [copy.deepcopy(image_syns[idx].detach()).to(args.device) for idx in range(client_num)]
label_syn_evals = [copy.deepcopy(label_syns[idx].detach()).to(args.device) for idx in range(client_num)]
dst_trains = [TensorDataset(torch.cat([image_syn_evals[idx], image_server_tmp], dim=0), torch.cat([label_syn_evals[idx], label_server_tmp], dim=0)) for idx in range(client_num)]
ldr_trains = [torch.utils.data.DataLoader(dst_trains[idx], batch_size=args.batch, shuffle=True, num_workers=0) for idx in range(client_num)]
for wi in range(args.wk_iters):
print("============ Train epoch {} ============".format(wi + a_iter * args.wk_iters))
# train local model using local condensed images
mean_loss = []
for client_idx in range(client_num):
model, optimizer, ldr_train, image_syn_eval = models[client_idx], optimizers[client_idx], ldr_trains[client_idx], image_syn_evals[client_idx]
_, _, align_loss = train_vhl(model, optimizer, loss_fun, client_num, device, ldr_train, image_server_tmp, label_server_tmp, distance_loss, args.lambda_sim, image_syn_eval, image_server_tmp, args.ipc, args.reg_loss)
# record align_loss
wandb.log({f'Align Loss Client {client_idx}': align_loss})
reg_loss_save[f'Client{client_idx}'].append(align_loss)
mean_loss.append(align_loss)
if client_idx == client_num-1:
reg_loss_save['mean'].append(np.mean(mean_loss))
local_time += time.time() - tstart
print(f'FL pipeline time per iteration: {time.time() - tstart}')
# Update global condensed data with GM
# if a_iter < 10:
# if a_iter%10==0:
# if a_iter%10==0 and a_iter<101:
# if a_iter%5==0 and a_iter<51:
if a_iter%args.si_tgap==0 and a_iter < args.si_tgap*args.image_update_times+1:
tstart = time.time()
# setup optimizer and criterion
optimizer_img = torch.optim.SGD([server_image_syn,], lr=args.lr_img, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
criterion = nn.CrossEntropyLoss().to(args.device)
# set dummy gradient template
gw_reals = [[] for _ in range(num_classes)]
local_datas = [copy.deepcopy(image_syns[idx].detach()).to(args.device) for idx in range(client_num)]
local_labels = [copy.deepcopy(label_syns[idx].detach()).to(args.device) for idx in range(client_num)]
for c in range(num_classes):
for client_idx in range(client_num):
local_data = local_datas[client_idx][c*args.ipc:(c+1)*args.ipc].reshape((args.ipc, channel, im_size[0], im_size[1]))
local_label = local_labels[client_idx][c*args.ipc:(c+1)*args.ipc]
output_local = server_model(local_data)
loss_local = criterion(output_local, local_label)
if gw_reals[c] == []:
gw_real_ = torch.autograd.grad(loss_local.to(args.device), list(server_model.parameters()))
gw_reals[c] = list((_.detach().clone()*client_weights[client_idx] for _ in gw_real_))
else:
gw_real_ = torch.autograd.grad(loss_local.to(args.device), list(server_model.parameters()))
gw_real_ = list((_.detach().clone()*client_weights[client_idx] for _ in gw_real_))
for i, gw in enumerate(gw_real_):
gw_reals[c][i] += gw
# client_idx = 1
# local_data = copy.deepcopy(image_syns[client_idx].detach()).to(args.device)
# local_label = copy.deepcopy(label_syns[client_idx].detach()).to(args.device)
# output_local = models[client_idx](local_data)
# loss_local = criterion(output_local, local_label)
# gw_real_ = torch.autograd.grad(loss_local.to(args.device), list(models[client_idx].parameters()))
# gw_real = list((_.detach().clone() for _ in gw_real_))
local_time += time.time() - tstart
# gradient matching
tstart = time.time()
for it in range(server_iteration):
loss_avg = 0
loss, server_image_syn = gradient_matching(args, server_model, criterion, gw_reals, server_image_syn, optimizer_img, channel, num_classes, im_size, args.ipc)
# report averaged loss
loss_avg += loss
loss_avg /= num_classes
# if it == server_iteration-1:
if (it+1)%100==0:
print('Global update:\t Total iter:%05d, local iter = %05d, loss = %.4f' % (a_iter, it, loss_avg))
global_time += time.time()-tstart
print(f'Global synthetic images update time per iteration: {time.time()-tstart}')
## Aggregation
tstart = time.time()
server_model, models = communication(args, server_model, models, client_weights)
global_time += time.time() - tstart
## Report after aggregation
mean_loss, mean_acc = [], []
for client_idx in range(client_num):
model, train_loader, optimizer = models[client_idx], train_loaders[client_idx], optimizers[client_idx]
train_loss, train_acc = test(model, train_loader, loss_fun, device)
print(' {:<11s}| Train Loss: {:.4f} | Train Acc: {:.4f}'.format(datasets[client_idx] ,train_loss, train_acc))
train_loss_save[f'Client{client_idx}'].append(train_loss)
train_acc_save[f'Client{client_idx}'].append(train_loss)
mean_loss.append(train_loss)
mean_acc.append(train_acc)
if client_idx == client_num-1:
train_loss_save['mean'].append(np.mean(mean_loss))
train_acc_save['mean'].append(np.mean(mean_acc))
# testing
mean_loss, mean_acc = [], []
for test_idx, test_loader in enumerate(test_loaders):
test_loss, test_acc = test(models[test_idx], test_loader, loss_fun, device)
print(' {:<11s}| Test Loss: {:.4f} | Test Acc: {:.4f}'.format(datasets[test_idx], test_loss, test_acc))
wandb.log({f'Test Loss client {test_idx}': test_loss})
wandb.log({f'Test Acc client {test_idx}': test_acc})
val_loss_save[f'Client{test_idx}'].append(test_loss)
val_acc_save[f'Client{test_idx}'].append(test_acc)
mean_loss.append(test_loss)
mean_acc.append(test_acc)
if test_idx == client_num-1:
val_loss_save['mean'].append(np.mean(mean_loss))
val_acc_save['mean'].append(np.mean(mean_acc))
# testing on heldout global test dataset
test_loss, test_acc = test(server_model, concated_test_loader, loss_fun, device)
print(' {:<11s}| Test Loss: {:.4f} | Test Acc: {:.4f}'.format('GLobal Held Out', test_loss, test_acc))
wandb.log({'Test Loss global held-out': test_loss})
wandb.log({'Test Acc global held-out': test_acc})
test_loss_save['GLobal Held Out'].append(test_loss)
test_acc_save['GLobal Held Out'].append(test_acc)
print(f'Total elapsed time: {time.time()-start_time} secs')
wandb.log({'Total elapsed time': (time.time()-start_time)/60})
print(f'Total server time: {global_time} secs')
print(f'Total client time: {local_time} secs')
# Use globally distilled data for training
# deep copy for any unawared modification
server_image_final = copy.deepcopy(server_image_syn.detach()).to(args.device)
server_label_final = copy.deepcopy(server_label_syn.detach()).to(args.device)
server_dst_train_final = TensorDataset(server_image_final, server_label_final)
server_loader_final = torch.utils.data.DataLoader(server_dst_train_final, batch_size=args.ipc, shuffle=True, num_workers=0)
# get model and set criterion and optimizer
server_model_final = get_network(args.model, channel, num_classes, im_size).to(args.device)
loss_fun_final = nn.CrossEntropyLoss()
optimizer_final = optim.SGD(params=server_model_final.parameters(), lr=args.lr)
for wi in range(args.iters*args.wk_iters):
# train local model using local condensed images
train(server_model_final, server_loader_final, optimizer_final, loss_fun_final, client_num, device)
# testing on local datasets
mean_loss, mean_acc = [], []
for test_idx, test_loader in enumerate(test_loaders):
test_loss, test_acc = test(server_model_final, test_loader, loss_fun_final, device)
wandb.log({f'Final GLobal Test Acc Client {test_idx}': test_acc})
print('Final global model {:<11s}| Test Loss: {:.4f} | Test Acc: {:.4f}'.format(datasets[test_idx], test_loss, test_acc))
global_loss_save[f'Client{test_idx}'].append(test_loss)
global_acc_save[f'Client{test_idx}'].append(test_acc)
mean_loss.append(test_loss)
mean_acc.append(test_acc)
if test_idx == client_num-1:
global_loss_save['mean'].append(np.mean(mean_loss))
global_acc_save['mean'].append(np.mean(mean_acc))
# Save checkpoint
print(' Saving checkpoints to {}...'.format(SAVE_PATH))
for client_idx in range(client_num):
torch.save(models[client_idx].state_dict(), f'{SAVE_PATH}/model_{client_idx}.pt')
torch.save(server_model.state_dict(), f'{SAVE_PATH}/server_model.pt')
# Save acc and loss results
metrics_pd = pd.DataFrame.from_dict(train_loss_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_train_loss_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(train_acc_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_train_acc_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(val_loss_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_val_loss_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(val_acc_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_val_acc_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(test_loss_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_test_loss_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(test_acc_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_test_acc_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(reg_loss_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(global_loss_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_global_loss_local{args.wk_iters}_{args.seed}.csv"))
metrics_pd = pd.DataFrame.from_dict(global_acc_save)
metrics_pd.to_csv(os.path.join(SAVE_PATH,f"{args.model}_{args.ipc}_{args.init}_{args.reg_loss}{args.lambda_sim}_global_acc_local{args.wk_iters}_{args.seed}.csv"))