-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
209 lines (162 loc) · 7.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchvision.utils import make_grid
from torchvision import datasets, transforms
from util.misc import CSVLogger
from util.keep_cutout import Keep_Cutout, Keep_Cutout_Low
from util.keep_autoaugment import Keep_Autoaugment, Keep_Autoaugment_Low
from model.resnet import ResNet18, ResNet18_Early
from model.wide_resnet import WideResNet, WideResNet_Early
model_options = ['resnet', 'wideresnet']
dataset_options = ['cifar10']
method_options = ['keep_cutout', 'keep_cutout_low', 'keep_cutout_early', 'keep_cutout_low_early',
'keep_autoaugment','keep_autoaugment_low', 'keep_autoaugment_early', 'keep_autoaugment_low_early']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10', choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet', choices=model_options)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--length', type=int, default=16, help='length of the holes')
parser.add_argument('--N', type=int, default=3, help='number of autoaugments')
parser.add_argument('--M', type=int, default=24, help='magnitude of autoaugments')
parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0, help='random seed (default: 1)')
parser.add_argument('--method', default='keep_cutout', choices=method_options)
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
test_id = args.dataset + '_' + args.model + '_' + args.method
print(args)
# Image Preprocessing
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]]
std=[x / 255.0 for x in [63.0, 62.1, 66.7]]
normalize = transforms.Normalize(mean, std)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if args.method=='keep_cutout':
keep = Keep_Cutout(train_transform, mean, std, args.length)
elif args.method=='keep_cutout_low':
keep = Keep_Cutout_Low(train_transform, mean, std, args.length)
elif args.method=='keep_cutout_early':
keep = Keep_Cutout(train_transform, mean, std, args.length, True)
elif args.method=='keep_cutout_low_early':
keep = Keep_Cutout_Low(train_transform, mean, std, args.length, True)
elif args.method=='keep_autoaugment':
keep = Keep_Autoaugment(train_transform, mean, std, args.length, args.N, args.M)
elif args.method=='keep_autoaugment_low':
keep = Keep_Autoaugment_Low(train_transform, mean, std, args.length, args.N, args.M)
elif args.method=='keep_autoaugment_early':
keep = Keep_Autoaugment(train_transform, mean, std, args.length, args.N, args.M, True)
elif args.method=='keep_autoaugment_low_early':
keep = Keep_Autoaugment_Low(train_transform, mean, std, args.length, args.N, args.M, True)
train_dataset = datasets.CIFAR10(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
pin_memory=True,
num_workers=8)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=8)
elif args.model == 'wideresnet':
cnn = WideResNet(depth=28,widen_factor=10, dropout_rate=0.0, num_classes=10)
if 'early' in args.method:
cnn = WideResNet_Early(depth=28,widen_factor=10, dropout_rate=0.0, num_classes=10)
else:
cnn = ResNet18(num_classes=10)
if 'early' in args.method:
cnn = ResNet18_Early(num_classes=10)
cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = CosineAnnealingLR(cnn_optimizer, T_max=args.epochs, eta_min=0.)
if not os.path.isdir('logs'):
os.mkdir('logs')
filename = 'logs/' + test_id + '.csv'
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
for images, labels in loader:
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
if 'early' in args.method:
pred,_ = cnn(images,False)
else:
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels).sum().item()
val_acc = correct / total
cnn.train()
return val_acc
for epoch in range(args.epochs):
xentropy_loss_avg = 0.
correct = 0.
total = 0.
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = images.cuda()
labels = labels.cuda()
if 'keep' in args.method:
images = keep(images, cnn)
cnn.zero_grad()
if 'early' in args.method:
pred,aux_pred = cnn(images,False)
xentropy_loss = criterion(pred, labels)
aux_loss = criterion(aux_pred, labels)
xentropy_loss += aux_loss*0.3
else:
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
xentropy_loss.backward()
cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.item()
# Calculate running average of accuracy
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
progress_bar.set_postfix(
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
test_acc = test(test_loader)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step(epoch) # Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)}
csv_logger.writerow(row)
torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()