-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathclusterdist.m
109 lines (94 loc) · 3.21 KB
/
clusterdist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function pd = clusterdist(p, s)
% clusterdist - compute clustering distance between groups of points
%
% FORMAT: pcd = clusterdist(p, s)
%
% Input fields:
%
% p points (PxD double)
% s labels (Px1 cell array of strings with subset IDs)
%
% Output fields:
%
% pcd point-clustering-distance measure
%
% Version: v0.9b
% Build: 11051114
% Date: Apr-08 2011, 10:18 PM EST
% Author: Jochen Weber, SCAN Unit, Columbia University, NYC, NY, USA
% URL/Info: http://neuroelf.net/
% Copyright (c) 2010, 2011, Jochen Weber
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of Columbia University nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% argument check
if nargin < 2 || ...
~isa(p, 'double') || ...
ndims(p) > 2 || ...
isempty(p) || ...
any(isinf(p(:)) | isnan(p(:))) || ...
~iscell(s) || ...
numel(s) ~= size(p, 1)
error( ...
'neuroelf:BadArgument', ...
'Bad or missing argument.' ...
);
end
s = s(:);
% number of points
np = size(p, 1);
% get unique IDs (titles, ...)
us = uunion(lower(s), {});
ns = numel(us);
if ns == 1
error( ...
'neuroelf:BadArgument', ...
'Not enough subsets in set given.' ...
);
end
% find rows that match id
usrows = cell(ns, 1);
for sc = 1:ns
usrows{sc} = find(strcmpi(s, us{sc}));
end
% initialize output
pd = zeros(np, 1);
% for each point
for pc = 1:size(p, 1)
% initialize the metric
pdc = 0;
% reverse set
sids = 1:ns;
sids(strcmpi(us, s{pc})) = [];
% iterate over sets (other than own)
for sc = sids
% compute distances between points
pds = psetdists(p(usrows{sc}, :), p(pc, :));
% add minimum to metric
pdc = pdc - log(1 ./ (1 + min(pds(:))));
end
% store in output
pd(pc) = pdc;
end
% divide by number of studies - 1
pd = pd ./ (ns - 1);