Tip
Location within the framework Clarisse-agent-framework/cache
.
Caching is a process used to temporarily store copies of data or computations in a cache (a storage location) to facilitate faster access upon future requests. The primary purpose of caching is to improve the efficiency and performance of systems by reducing the need to repeatedly fetch or compute the same data from a slower or more resource-intensive source.
import { UnconstrainedCache } from "Clarisse-agent-framework/cache/unconstrainedCache";
const cache = new UnconstrainedCache();
// Save
await cache.set("a", 1);
await cache.set("b", 2);
// Read
const result = await cache.get("a");
console.log(result); // 1
// Meta
console.log(cache.enabled); // true
console.log(await cache.has("a")); // true
console.log(await cache.has("b")); // true
console.log(await cache.has("c")); // false
console.log(await cache.size()); // 2
// Delete
await cache.delete("a");
console.log(await cache.has("a")); // false
// Clear
await cache.clear();
console.log(await cache.size()); // 0
Source: examples/cache/unconstrainedCache.ts
import { UnconstrainedCache } from "Clarisse-agent-framework/cache/unconstrainedCache";
const cache = new UnconstrainedCache<number>();
async function fibonacci(n: number): Promise<number> {
const cacheKey = n.toString();
const cached = await cache.get(cacheKey);
if (cached !== undefined) {
return cached;
}
const result = n < 1 ? 0 : n <= 2 ? 1 : (await fibonacci(n - 1)) + (await fibonacci(n - 2));
await cache.set(cacheKey, result);
return result;
}
console.info(await fibonacci(10)); // 55
console.info(await fibonacci(9)); // 34 (retrieved from cache)
console.info(`Cache size ${await cache.size()}`); // 10
Source: examples/cache/unconstrainedCacheFunction.ts
import { SlidingCache } from "Clarisse-agent-framework/cache/slidingCache";
import { WikipediaTool } from "Clarisse-agent-framework/tools/search/wikipedia";
const ddg = new WikipediaTool({
cache: new SlidingCache({
size: 100, // max 100 entries
ttl: 5 * 60 * 1000, // 5 minutes lifespan
}),
});
const response = await ddg.run({
query: "United States",
});
// upcoming requests with the EXACTLY same input will be retrieved from the cache
Source: examples/cache/toolCache.ts
Important
Cache key is created by serializing function parameters (the order of keys in the object does not matter).
import { SlidingCache } from "Clarisse-agent-framework/cache/slidingCache";
import { OllamaChatLLM } from "Clarisse-agent-framework/adapters/ollama/chat";
import { BaseMessage } from "Clarisse-agent-framework/llms/primitives/message";
const llm = new OllamaChatLLM({
modelId: "llama3.1",
parameters: {
temperature: 0,
num_predict: 50,
},
cache: new SlidingCache({
size: 50,
}),
});
console.info(await llm.cache.size()); // 0
const first = await llm.generate([BaseMessage.of({ role: "user", text: "Who was Alan Turing?" })]);
// upcoming requests with the EXACTLY same input will be retrieved from the cache
console.info(await llm.cache.size()); // 1
const second = await llm.generate([BaseMessage.of({ role: "user", text: "Who was Alan Turing?" })]);
console.info(first === second); // true
Source: examples/cache/llmCache.ts
Tip
Caching for non-chat LLMs works exactly the same way.
The framework provides multiple out-of-the-box cache implementations.
Unlimited in size.
import { UnconstrainedCache } from "Clarisse-agent-framework/cache/unconstrainedCache";
const cache = new UnconstrainedCache();
await cache.set("a", 1);
console.log(await cache.has("a")); // true
console.log(await cache.size()); // 1
Keeps last k
entries in the memory. The oldest ones are deleted.
import { SlidingCache } from "Clarisse-agent-framework/cache/slidingCache";
const cache = new SlidingCache<number>({
size: 3, // (required) number of items that can be live in the cache at a single moment
ttl: 1000, // (optional, default is Infinity) Time in milliseconds after the element is removed from a cache
});
await cache.set("a", 1);
await cache.set("b", 2);
await cache.set("c", 3);
await cache.set("d", 4); // overflow - cache internally removes the oldest entry (key "a")
console.log(await cache.has("a")); // false
console.log(await cache.size()); // 3
Source: examples/cache/slidingCache.ts
One may want to persist data to a file so that the data can be later loaded. In that case the FileCache
is ideal candidate.
You have to provide a location where the cache is persisted.
import { FileCache } from "Clarisse-agent-framework/cache/fileCache";
import * as os from "node:os";
const cache = new FileCache({
fullPath: `${os.tmpdir()}/Clarisse_file_cache_${Date.now()}.json`,
});
console.log(`Saving cache to "${cache.source}"`);
await cache.set("abc", { firstName: "John", lastName: "Doe" });
Source: examples/cache/fileCache.ts
Note
Provided location (fullPath
) doesn't have to exist. It gets automatically created when needed.
Note
Every modification to the cache (adding, deleting, clearing) immediately updates the target file.
import { FileCache } from "Clarisse-agent-framework/cache/fileCache";
import { UnconstrainedCache } from "Clarisse-agent-framework/cache/unconstrainedCache";
import os from "node:os";
const memoryCache = new UnconstrainedCache<number>();
await memoryCache.set("a", 1);
const fileCache = await FileCache.fromProvider(memoryCache, {
fullPath: `${os.tmpdir()}/Clarisse_file_cache.json`,
});
console.log(`Saving cache to "${fileCache.source}"`);
console.log(await fileCache.get("a")); // 1
Source: examples/cache/fileCacheCustomProvider.ts
The special type of cache is NullCache
which implements the BaseCache
interface but does nothing.
The reason for implementing is to enable Null object pattern.
import { Cache } from "Clarisse-agent-framework/cache/decoratorCache";
class Generator {
@Cache()
get(seed: number) {
return (Math.random() * 1000) / Math.max(seed, 1);
}
}
const generator = new Generator();
const a = generator.get(5);
const b = generator.get(5);
console.info(a === b); // true
console.info(a === generator.get(6)); // false
Source: examples/cache/decoratorCache.ts
Complex example
import { Cache, SingletonCacheKeyFn } from "Clarisse-agent-framework/cache/decoratorCache";
class MyService {
@Cache({
cacheKey: SingletonCacheKeyFn,
ttl: 3600,
enumerable: true,
enabled: true,
})
get id() {
return Math.floor(Math.random() * 1000);
}
reset() {
Cache.getInstance(this, "id").clear();
}
}
const service = new MyService();
const a = service.id;
console.info(a === service.id); // true
service.reset();
console.info(a === service.id); // false
Source: examples/cache/decoratorCacheComplex.ts
Note
Default cacheKey
function is ObjectHashKeyFn
Caution
Calling an annotated method with the @Cache
decorator with different parameters (despite the fact you are not using them) yields in cache bypass (different arguments = different cache key) generated.
Be aware of that. If you want your method always to return the same response, use SingletonCacheKeyFn
.
Because previously mentioned CacheDecorator
can be applied only to class methods/getter the framework
provides a way how to do caching on a function level.
import { CacheFn } from "Clarisse-agent-framework/cache/decoratorCache";
import { setTimeout } from "node:timers/promises";
const getSecret = CacheFn.create(
async () => {
// instead of mocking response you would do a real fetch request
const response = await Promise.resolve({ secret: Math.random(), expiresIn: 100 });
getSecret.updateTTL(response.expiresIn);
return response.secret;
},
{}, // options object
);
const token = await getSecret();
console.info(token === (await getSecret())); // true
await setTimeout(150);
console.info(token === (await getSecret())); // false
Source: examples/cache/cacheFn.ts
Note
Internally, the function is wrapped as a class; therefore, the same rules apply here as if it were a method annotated with the @Cache
decorator.
To create your cache implementation, you must implement the BaseCache
class.
import { BaseCache } from "Clarisse-agent-framework/cache/base";
import { NotImplementedError } from "Clarisse-agent-framework/errors";
export class CustomCache<T> extends BaseCache<T> {
size(): Promise<number> {
throw new NotImplementedError();
}
set(key: string, value: T): Promise<void> {
throw new NotImplementedError();
}
get(key: string): Promise<T | undefined> {
throw new NotImplementedError();
}
has(key: string): Promise<boolean> {
throw new NotImplementedError();
}
delete(key: string): Promise<boolean> {
throw new NotImplementedError();
}
clear(): Promise<void> {
throw new NotImplementedError();
}
createSnapshot() {
throw new NotImplementedError();
}
loadSnapshot(snapshot: ReturnType<typeof this.createSnapshot>): void {
throw new NotImplementedError();
}
}
Source: examples/cache/custom.ts
The simplest implementation is UnconstrainedCache
, which can be found here.