-
Notifications
You must be signed in to change notification settings - Fork 1
/
loss.py
133 lines (97 loc) · 4.23 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from math import exp
def _iou(pred, target, size_average=True):
b = pred.shape[0]
IoU = 0.0
for i in range(0, b):
# compute the IoU of the foreground
Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :])
Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1
IoU1 = Iand1 / Ior1
# IoU loss is (1-IoU1)
IoU = IoU + (1 - IoU1)
return IoU / b
class IOU(torch.nn.Module):
def __init__(self, size_average=True):
super(IOU, self).__init__()
self.size_average = size_average
def forward(self, pred, target):
return _iou(pred, target, self.size_average)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def bce_iou_loss(pred, target):
bce_loss = nn.BCELoss(size_average=True)
iou_loss_f = IOU(size_average=True)
bce_out = bce_loss(pred, target)
iou_out = iou_loss_f(pred, target)
loss = bce_out + iou_out
return loss
def bce_ssim_loss(pred, target):
bce_loss = nn.BCELoss(size_average=True)
ssim_loss = SSIM(window_size=11, size_average=True)
iou_loss = IOU(size_average=True)
bce_out = bce_loss(pred, target)
ssim_out = 1 - ssim_loss(pred, target)
iou_out = iou_loss(pred, target)
loss = bce_out + iou_out + ssim_out
return loss
def structure_loss(pred, mask):
weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy(pred, mask, reduce='none')
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1) / (union - inter + 1)
return (wbce + wiou).mean()
def build_loss(config):
loss_dict = {
'bce': nn.BCELoss(size_average=True),
'bi': bce_iou_loss,
'bas': bce_ssim_loss,
'f3': structure_loss,
}
return loss_dict[config.mask_loss], loss_dict[config.edge_loss]