forked from VowpalWabbit/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_regressor.cc
443 lines (398 loc) · 13.2 KB
/
parse_regressor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/*
Copyright (c) 2009 Yahoo! Inc. All rights reserved. The copyrights
embodied in the content of this file are licensed under the BSD
(revised) open source license
*/
#include <fstream>
#include <iostream>
using namespace std;
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include "parse_regressor.h"
#include "loss_functions.h"
#include "global_data.h"
#include "io.h"
void initialize_regressor(regressor &r)
{
size_t length = ((size_t)1) << global.num_bits;
global.thread_mask = (global.stride * (length >> global.thread_bits)) - 1;
size_t num_threads = global.num_threads();
r.weight_vectors = (weight **)malloc(num_threads * sizeof(weight*));
if (global.per_feature_regularizer_input != "")
r.regularizers = (weight **)malloc(num_threads * sizeof(weight*));
else
r.regularizers = NULL;
for (size_t i = 0; i < num_threads; i++)
{
//r.weight_vectors[i] = (weight *)calloc(length/num_threads, sizeof(weight));
r.weight_vectors[i] = (weight *)calloc(global.stride*length/num_threads, sizeof(weight));
// random weight initialization for matrix factorization
if (global.random_weights)
{
if (global.rank > 0)
for (size_t j = 0; j < global.stride*length/num_threads; j++)
r.weight_vectors[i][j] = (double) 0.1 * drand48();
else
for (size_t j = 0; j < length/num_threads; j++)
r.weight_vectors[i][j] = drand48() - 0.5;
}
if (r.regularizers != NULL)
r.regularizers[i] = (weight *)calloc(2*length/num_threads, sizeof(weight));
if (r.weight_vectors[i] == NULL || (r.regularizers != NULL && r.regularizers[i] == NULL))
{
cerr << global.program_name << ": Failed to allocate weight array: try decreasing -b <bits>" << endl;
exit (1);
}
if (global.initial_weight != 0.)
for (size_t j = 0; j < global.stride*length/num_threads; j+=global.stride)
r.weight_vectors[i][j] = global.initial_weight;
if (global.lda)
{
size_t stride = global.stride;
for (size_t j = 0; j < stride*length/num_threads; j+=stride)
{
for (size_t k = 0; k < global.lda; k++) {
r.weight_vectors[i][j+k] = -log(drand48()) + 1.0;
// r.weight_vectors[i][j+k] *= r.weight_vectors[i][j+k];
// r.weight_vectors[i][j+k] *= r.weight_vectors[i][j+k];
r.weight_vectors[i][j+k] *= (float)global.lda_D / (float)global.lda
/ global.length() * 200;
}
r.weight_vectors[i][j+global.lda] = global.initial_t;
}
}
if(global.adaptive)
for (size_t j = 1; j < global.stride*length/num_threads; j+=global.stride)
r.weight_vectors[i][j] = 1;
}
}
v_array<char> temp;
void read_vector(const char* file, regressor& r, bool& initialized, bool reg_vector)
{
ifstream source(file);
if (!source.is_open())
{
cout << "can't open " << file << endl << " ... exiting." << endl;
exit(1);
}
size_t v_length;
source.read((char*)&v_length, sizeof(v_length));
temp.erase();
if (temp.index() < v_length)
reserve(temp, v_length);
source.read(temp.begin,v_length);
if (strcmp(temp.begin,version.c_str()) != 0)
{
cout << "source has possibly incompatible version!" << endl;
exit(1);
}
source.read((char*)&global.sd->min_label, sizeof(global.sd->min_label));
source.read((char*)&global.sd->max_label, sizeof(global.sd->max_label));
size_t local_num_bits;
source.read((char *)&local_num_bits, sizeof(local_num_bits));
if (!initialized){
if (global.default_bits != true && global.num_bits != local_num_bits)
{
cout << "Wrong number of bits for source!" << endl;
exit (1);
}
global.default_bits = false;
global.num_bits = local_num_bits;
}
else
if (local_num_bits != global.num_bits)
{
cout << "can't combine sources with different feature number!" << endl;
exit (1);
}
size_t local_thread_bits;
source.read((char*)&local_thread_bits, sizeof(local_thread_bits));
if (!initialized){
global.thread_bits = local_thread_bits;
global.partition_bits = global.thread_bits;
}
else
if (local_thread_bits != global.thread_bits)
{
cout << "can't combine sources trained with different numbers of threads!" << endl;
exit (1);
}
int len;
source.read((char *)&len, sizeof(len));
vector<string> local_pairs;
for (; len > 0; len--)
{
char pair[2];
source.read(pair, sizeof(char)*2);
string temp(pair, 2);
local_pairs.push_back(temp);
}
size_t local_rank;
source.read((char*)&local_rank, sizeof(local_rank));
size_t local_lda;
source.read((char*)&local_lda, sizeof(local_lda));
if (!initialized)
{
global.rank = local_rank;
global.lda = local_lda;
//initialized = true;
}
else
{
cout << "can't combine regressors" << endl;
exit(1);
}
if (global.rank > 0)
{
float temp = ceilf(logf((float)(global.rank*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
}
if (global.lda > 0)
{
// par->sort_features = true;
float temp = ceilf(logf((float)(global.lda*2+1)) / logf (2.f));
global.stride = 1 << (int) temp;
global.random_weights = true;
}
if (!initialized)
{
global.pairs = local_pairs;
initialize_regressor(r);
}
else
if (local_pairs != global.pairs)
{
cout << "can't combine sources with different features!" << endl;
for (size_t i = 0; i < local_pairs.size(); i++)
cout << local_pairs[i] << " " << local_pairs[i].size() << " ";
cout << endl;
for (size_t i = 0; i < global.pairs.size(); i++)
cout << global.pairs[i] << " " << global.pairs[i].size() << " ";
cout << endl;
exit (1);
}
size_t local_ngram;
source.read((char*)&local_ngram, sizeof(local_ngram));
size_t local_skips;
source.read((char*)&local_skips, sizeof(local_skips));
if (!initialized)
{
global.ngram = local_ngram;
global.skips = local_skips;
initialized = true;
}
else
if (global.ngram != local_ngram || global.skips != local_skips)
{
cout << "can't combine sources with different ngram features!" << endl;
exit(1);
}
size_t stride = global.stride;
while (source.good())
{
uint32_t hash;
source.read((char *)&hash, sizeof(hash));
weight w = 0.;
source.read((char *)&w, sizeof(float));
size_t num_threads = global.num_threads();
if (source.good())
{
if (global.rank != 0)
r.weight_vectors[hash % num_threads][hash/num_threads] = w;
else if (global.lda == 0)
if (reg_vector) {
r.regularizers[hash % num_threads][hash/num_threads] = w;
if (hash%2 == 1) // This is the prior mean; previous element was prior variance
r.weight_vectors[(hash/2) % num_threads][(hash/2*stride)/num_threads] = w;
}
else
r.weight_vectors[hash % num_threads][(hash*stride)/num_threads]
= r.weight_vectors[hash % num_threads][(hash*stride)/num_threads] + w;
else
r.weight_vectors[hash % num_threads][hash/num_threads]
= r.weight_vectors[hash % num_threads][hash/num_threads] + w;
}
}
source.close();
}
void parse_regressor_args(po::variables_map& vm, regressor& r, string& final_regressor_name, bool quiet)
{
if (vm.count("final_regressor")) {
final_regressor_name = vm["final_regressor"].as<string>();
if (!quiet)
cerr << "final_regressor = " << vm["final_regressor"].as<string>() << endl;
}
else
final_regressor_name = "";
vector<string> regs;
if (vm.count("initial_regressor") || vm.count("i"))
regs = vm["initial_regressor"].as< vector<string> >();
/*
Read in regressors. If multiple regressors are specified, do a weighted
average. If none are specified, initialize according to global_seg &
numbits.
*/
bool initialized = false;
for (size_t i = 0; i < regs.size(); i++)
read_vector(regs[i].c_str(), r, initialized, false);
if (global.per_feature_regularizer_input != "")
read_vector(global.per_feature_regularizer_input.c_str(), r, initialized, true);
if (!initialized)
{
if(vm.count("noop") || vm.count("sendto"))
{
r.weight_vectors = NULL;
r.regularizers = NULL;
}
else
initialize_regressor(r);
}
}
void free_regressor(regressor &r)
{
if (r.weight_vectors != NULL)
{
for (size_t i = 0; i < global.num_threads(); i++)
if (r.weight_vectors[i] != NULL)
free(r.weight_vectors[i]);
free(r.weight_vectors);
}
if (r.regularizers != NULL)
{
for (size_t i = 0; i < global.num_threads(); i++)
if (r.regularizers[i] != NULL)
free(r.regularizers[i]);
free(r.regularizers);
}
}
void save_predictor(string reg_name, size_t current_pass)
{
if(global.save_per_pass) {
char* filename = new char[reg_name.length()+4];
sprintf(filename,"%s.%lu",reg_name.c_str(),(long unsigned)current_pass);
dump_regressor(string(filename), *(global.reg));
delete filename;
}
}
void dump_regressor(string reg_name, regressor &r, bool as_text, bool reg_vector)
{
if (reg_name == string(""))
return;
string start_name = reg_name+string(".writing");
io_buf io_temp;
int f = io_temp.open_file(start_name.c_str(),io_buf::WRITE);
if (f<0)
{
cout << "can't open: " << start_name << " for writing, exiting" << endl;
exit(1);
}
size_t v_length = version.length()+1;
if (!as_text) {
io_temp.write_file(f,(char*)&v_length, sizeof(v_length));
io_temp.write_file(f,version.c_str(),v_length);
io_temp.write_file(f,(char*)&global.sd->min_label, sizeof(global.sd->min_label));
io_temp.write_file(f,(char*)&global.sd->max_label, sizeof(global.sd->max_label));
io_temp.write_file(f,(char *)&global.num_bits, sizeof(global.num_bits));
io_temp.write_file(f,(char *)&global.thread_bits, sizeof(global.thread_bits));
int len = global.pairs.size();
io_temp.write_file(f,(char *)&len, sizeof(len));
for (vector<string>::iterator i = global.pairs.begin(); i != global.pairs.end();i++)
io_temp.write_file(f,i->c_str(),2);
io_temp.write_file(f,(char*)&global.rank, sizeof(global.rank));
io_temp.write_file(f,(char*)&global.lda, sizeof(global.lda));
io_temp.write_file(f,(char*)&global.ngram, sizeof(global.ngram));
io_temp.write_file(f,(char*)&global.skips, sizeof(global.skips));
}
else {
char buff[512];
int len;
len = sprintf(buff, "Version %s\n", version.c_str());
io_temp.write_file(f, buff, len);
len = sprintf(buff, "Min label:%f max label:%f\n", global.sd->min_label, global.sd->max_label);
io_temp.write_file(f, buff, len);
len = sprintf(buff, "bits:%d thread_bits:%d\n", (int)global.num_bits, (int)global.thread_bits);
io_temp.write_file(f, buff, len);
for (vector<string>::iterator i = global.pairs.begin(); i != global.pairs.end();i++) {
len = sprintf(buff, "%s ", i->c_str());
io_temp.write_file(f, buff, len);
}
if (global.pairs.size() > 0)
{
len = sprintf(buff, "\n");
io_temp.write_file(f, buff, len);
}
len = sprintf(buff, "ngram:%d skips:%d\nindex:weight pairs:\n", (int)global.ngram, (int)global.skips);
io_temp.write_file(f, buff, len);
len = sprintf(buff, "rank:%d\n", (int)global.rank);
io_temp.write_file(f, buff, len);
len = sprintf(buff, "lda:%d\n", (int)global.lda);
io_temp.write_file(f, buff, len);
}
uint32_t length = 1 << global.num_bits;
size_t num_threads = global.num_threads();
size_t stride = global.stride;
if (reg_vector)
length *= 2;
for(uint32_t i = 0; i < length; i++)
{
if ((global.lda == 0) && (global.rank == 0))
{
weight v;
if (reg_vector)
{
v = r.regularizers[i%num_threads][(i/num_threads)];
}
else
v = r.weight_vectors[i%num_threads][stride*(i/num_threads)];
if (v != 0.)
{
if (!as_text) {
io_temp.write_file(f,(char *)&i, sizeof (i));
io_temp.write_file(f,(char *)&v, sizeof (v));
} else {
char buff[512];
int len = sprintf(buff, "%d:%f\n", i, v);
io_temp.write_file(f, buff, len);
}
}
}
else
{
size_t K = global.lda;
if (global.rank != 0)
K = global.rank*2+1;
for (size_t k = 0; k < K; k++)
{
weight v = r.weight_vectors[i%num_threads][(stride*i+k)/num_threads];
uint32_t ndx = stride*i+k;
if (!as_text) {
io_temp.write_file(f,(char *)&ndx, sizeof (ndx));
io_temp.write_file(f,(char *)&v, sizeof (v));
} else {
char buff[512];
int len;
if (global.rank != 0)
len = sprintf(buff, "%f ", v);
else
len = sprintf(buff, "%f ", v + global.lda_rho);
io_temp.write_file(f, buff, len);
}
}
if (as_text)
io_temp.write_file(f, "\n", 1);
}
}
io_temp.close_file();
rename(start_name.c_str(),reg_name.c_str());
}
void finalize_regressor(string reg_name, regressor &r)
{
dump_regressor(reg_name, r, false);
dump_regressor(global.text_regressor_name, r, true);
dump_regressor(global.per_feature_regularizer_output, r, false, true);
dump_regressor(global.per_feature_regularizer_text, r, true, true);
free_regressor(r);
}