-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy patheval.py
124 lines (104 loc) · 5.04 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from data_utils import load_and_cache_examples, tag_to_id, get_chunks
from flashtool import Logger
logger = logging.getLogger(__name__)
def evaluate(args, model, tokenizer, labels, pad_token_label_id, best, mode, prefix="", verbose=True):
eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
#if args.n_gpu > 1:
# model = torch.nn.DataParallel(model)
#model.to(args.device)
logger.info("***** Running evaluation %s *****", prefix)
if verbose:
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean()
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = np.argmax(preds, axis=2)
label_map = {i: label for i, label in enumerate(labels)}
preds_list = [[] for _ in range(out_label_ids.shape[0])]
out_id_list = [[] for _ in range(out_label_ids.shape[0])]
preds_id_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != pad_token_label_id:
preds_list[i].append(label_map[preds[i][j]])
out_id_list[i].append(out_label_ids[i][j])
preds_id_list[i].append(preds[i][j])
correct_preds, total_correct, total_preds = 0., 0., 0. # i variables
for ground_truth_id,predicted_id in zip(out_id_list,preds_id_list):
# We use the get chunks function defined above to get the true chunks
# and the predicted chunks from true labels and predicted labels respectively
lab_chunks = set(get_chunks(ground_truth_id, tag_to_id(args.data_dir)))
lab_pred_chunks = set(get_chunks(predicted_id, tag_to_id(args.data_dir)))
# Updating the i variables
correct_preds += len(lab_chunks & lab_pred_chunks)
total_preds += len(lab_pred_chunks)
total_correct += len(lab_chunks)
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
new_F = 2 * p * r / (p + r) if correct_preds > 0 else 0
is_updated = False
if new_F > best[-1]:
best = [p, r, new_F]
is_updated = True
results = {
"loss": eval_loss,
"precision": p,
"recall": r,
"f1": new_F,
"best_precision": best[0],
"best_recall":best[1],
"best_f1": best[-1]
}
logger.info("***** Eval results %s *****", prefix)
for key in sorted(results.keys()):
logger.info(" %s = %s", key, str(results[key]))
return results, preds_list, best, is_updated