-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathunet.py
94 lines (78 loc) · 3.87 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
from torch import nn
class UNet(nn.Module):
def __init__(self, num_classes, start_filters, channels_in=1, transpose=False, batch_norm=False):
# five sets of standard conv blocks
super().__init__()
self.conv1 = self.gen_conv_block(channels_in, start_filters, pooling=False, batch_norm=batch_norm)
self.conv2 = self.gen_conv_block(start_filters, start_filters * 2, batch_norm=batch_norm)
self.conv3 = self.gen_conv_block(start_filters * 2, start_filters * 4, batch_norm=batch_norm)
self.conv4 = self.gen_conv_block(start_filters * 4, start_filters * 8, batch_norm=batch_norm)
self.conv5 = self.gen_conv_block(start_filters * 8, start_filters * 16, batch_norm=batch_norm)
# four sets of upsampling layers
self.up6 = self.gen_upsampling_block(start_filters * 16, start_filters * 8, transpose)
self.conv6 = self.gen_conv_block(start_filters * 16, start_filters * 8, pooling=False, batch_norm=batch_norm)
self.up7 = self.gen_upsampling_block(start_filters * 8, start_filters * 4, transpose)
self.conv7 = self.gen_conv_block(start_filters * 8, start_filters * 4, pooling=False, batch_norm=batch_norm)
self.up8 = self.gen_upsampling_block(start_filters * 4, start_filters * 2, transpose)
self.conv8 = self.gen_conv_block(start_filters * 4, start_filters * 2, pooling=False, batch_norm=batch_norm)
self.up9 = self.gen_upsampling_block(start_filters * 2, start_filters, transpose)
self.conv9 = self.gen_conv_block(start_filters * 2, start_filters, pooling=False, batch_norm=batch_norm)
# 1x1xC conv with no upsampling
self.conv10 = nn.Sequential(
nn.Conv2d(start_filters, num_classes, kernel_size=1, stride=1),
nn.Sigmoid()
)
@staticmethod
def get_final_block(channels_in, num_classes):
layers = [nn.Conv2d(channels_in, num_classes, kernel_size=1, stride=1)]
if num_classes > 1:
layers.append(nn.Softmax())
else:
layers.append(nn.Sigmoid())
return nn.Sequential(*layers)
@staticmethod
def gen_upsampling_block(channels_in, channels_out, transpose=False, batch_norm=False):
layers = []
if transpose:
layers.append(nn.ConvTranspose2d(channels_in, channels_out,
kernel_size=2, stride=2))
else:
layers += [nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv2d(channels_in, channels_out, kernel_size=3, padding=[1, 1])]
if batch_norm:
layers.append(nn.BatchNorm2d(channels_out))
nn.ReLU()
return nn.Sequential(*layers)
@staticmethod
def gen_conv_block(channels_in, channels_out, kernel_size=3,
pooling=True, batch_norm=False):
if pooling:
layers = [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers = []
layers.append(nn.Conv2d(channels_in, channels_out, kernel_size, padding=[1, 1]))
if batch_norm:
layers.append(nn.BatchNorm2d(channels_out))
layers += [nn.ReLU(),
nn.Conv2d(channels_out, channels_out, kernel_size, padding=[1, 1])]
if batch_norm:
layers.append(nn.BatchNorm2d(channels_out))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(x2)
x4 = self.conv4(x3)
x5 = self.conv5(x4)
u6 = self.up6(x5)
x6 = self.conv6(torch.cat([u6, x4], dim=1))
u7 = self.up7(x6)
x7 = self.conv7(torch.cat([u7, x3], dim=1))
u8 = self.up8(x7)
x8 = self.conv8(torch.cat([u8, x2], dim=1))
u9 = self.up9(x8)
x9 = self.conv9(torch.cat([u9, x1], dim=1))
x10 = self.conv10(x9)
return x10