-
Notifications
You must be signed in to change notification settings - Fork 8
/
script.py
executable file
·265 lines (227 loc) · 6.7 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
__author__ = 'joon'
import sys
sys.path.insert(0, 'src')
sys.path.insert(0, 'ResearchTools')
from imports.basic_modules import *
from imports.ResearchTools import *
# Pipeline of the algorithm
TRAIN_SEED = True
TEST_SEED = True
LOAD_SALIENCY = True
GENERATE_GUIDE = True
TRAIN_SEG = True
TEST_SEG = True
# Common options
PASCALROOT = "/BS/joon_projects/work/" # please change this to your Pascal dir.
VISUALISE = False # visualise output on test images.
SAVE_CACHE = True # save intermediate & final results in cache/
OVERRIDECACHE = True # ignore saved cache even if intermediate results are in cache/
GPU = 0
# Experimental options
SEED_TYPE = 'GAP-HighRes'
PCRF_TYPE = 'deeplab'
# DenseCRF postprocessing.
# 'none' for no postprocessing.
# 'deeplab' for the parameters used by DeepLab v1.
###############
if TRAIN_SEED:
print("##########\nSeed Training\n##########")
from seed.train import main as seed_train
conf = dict(
vis=VISUALISE,
save=SAVE_CACHE,
overridecache=OVERRIDECACHE,
pascalroot=PASCALROOT,
imagenetmeanloc="data/ilsvrc_2012_mean.npy",
gpu=GPU,
)
control = dict(
init='VGG_ILSVRC_16_layers',
net=SEED_TYPE,
dataset='voc12train_aug',
datatype='Segmentation',
base_lr=0.001,
batch_size=15,
balbatch='none',
)
seed_train(control, conf)
if TEST_SEED:
print("##########\nSeed Testing\n##########")
from seed.test import main as seed_test
conf = dict(
save_cls=SAVE_CACHE,
save_heat=SAVE_CACHE,
vis=VISUALISE,
visconf=0.5,
shuffle=True,
overridecache=OVERRIDECACHE,
pascalroot=PASCALROOT,
imagenetmeanloc="data/ilsvrc_2012_mean.npy",
gpu=GPU,
)
control = dict(
init='VGG_ILSVRC_16_layers',
net=SEED_TYPE,
dataset='voc12train_aug',
datatype='Segmentation',
base_lr=0.001,
batch_size=15,
balbatch='none',
test_iter=8000,
test_dataset='voc12train_aug',
test_datatype='Segmentation',
test_ranking='none',
test_interpord=1,
test_gtcls='use',
)
seed_test(control, conf)
if LOAD_SALIENCY:
print("##########\nCopying Saliency Output\n##########")
mkdir_if_missing("cache/saliency-test/_test_dataset:voc12train_aug")
os.system(
"tar xf data/saliency-test/test_dataset:voc12train_aug.tar.gz -C cache/saliency-test/_test_dataset:voc12train_aug/ --force-local")
os.system(
"mv cache/saliency-test/_test_dataset:voc12train_aug/tmp/* cache/saliency-test/_test_dataset:voc12train_aug/")
if GENERATE_GUIDE:
print("##########\nGenerating Guide\n##########")
from guide_generation.generate import main as generate_guide
conf = dict(
vis=VISUALISE,
save=SAVE_CACHE,
shuffle=True,
overridecache=OVERRIDECACHE,
pascalroot=PASCALROOT,
gpu=GPU,
n=0,
N=1,
)
control = dict(
# seed
g_init='VGG_ILSVRC_16_layers',
g_net=SEED_TYPE,
g_dataset='voc12train_aug',
g_datatype='Segmentation',
g_base_lr=0.001,
g_batch_size=15,
g_balbatch='none',
g_test_iter=8000,
g_test_dataset='voc12train_aug',
g_test_datatype='Segmentation',
g_test_ranking='none',
g_test_interpord=1,
g_test_gtcls='use',
# SAL
s_net='DeepLabv2_ResNet',
s_dataset='MSRA',
s_datatype='NP',
s_test_dataset='voc12train_aug',
s_test_datatype='Segmentation',
gtcls='use',
seedthres=20,
salthres=50,
guiderule='G2',
test_dataset='voc12train_aug',
test_datatype='Segmentation',
)
generate_guide(control, conf)
if TRAIN_SEG:
print("##########\nTraining Segmenter\n##########")
from segmentation.train import main as seg_train
conf = dict(
vis=VISUALISE,
save=SAVE_CACHE,
overridecache=OVERRIDECACHE,
pascalroot=PASCALROOT,
imagenetmeanloc="data/ilsvrc_2012_mean.npy",
gpu=GPU,
)
control = dict(
init='VGG_ILSVRC_16_layers-deeplab',
net='DeepLab',
dataset='voc12train_aug',
datatype='Segmentation',
base_lr=0.001,
batch_size=15,
resize='none',
# seed
s_g_init='VGG_ILSVRC_16_layers',
s_g_net=SEED_TYPE,
s_g_dataset='voc12train_aug',
s_g_datatype='Segmentation',
s_g_base_lr=0.001,
s_g_batch_size=15,
s_g_balbatch='none',
s_g_test_iter=8000,
s_g_test_dataset='voc12train_aug',
s_g_test_datatype='Segmentation',
s_g_test_ranking='none',
s_g_test_interpord=1,
s_g_test_gtcls='use',
# SAL
s_s_net='DeepLabv2_ResNet',
s_s_dataset='MSRA',
s_s_datatype='NP',
s_s_test_dataset='voc12train_aug',
s_s_test_datatype='Segmentation',
s_gtcls='use',
s_seedthres=20,
s_salthres=50,
s_guiderule='G2',
s_test_dataset='voc12train_aug',
s_test_datatype='Segmentation',
)
seg_train(control, conf)
if TEST_SEG:
print("##########\nTesting Segmenter\n##########")
from segmentation.test import main as seg_test
conf = dict(
save=SAVE_CACHE,
vis=VISUALISE,
shuffle=True,
overridecache=OVERRIDECACHE,
pascalroot=PASCALROOT,
imagenetmeanloc="data/ilsvrc_2012_mean.npy",
gpu=GPU,
)
control = dict(
init='VGG_ILSVRC_16_layers-deeplab',
net='DeepLab',
dataset='voc12train_aug',
datatype='Segmentation',
base_lr=0.001,
batch_size=15,
resize='none',
# seed
s_g_init='VGG_ILSVRC_16_layers',
s_g_net=SEED_TYPE,
s_g_dataset='voc12train_aug',
s_g_datatype='Segmentation',
s_g_base_lr=0.001,
s_g_batch_size=15,
s_g_balbatch='none',
s_g_test_iter=8000,
s_g_test_dataset='voc12train_aug',
s_g_test_datatype='Segmentation',
s_g_test_ranking='none',
s_g_test_interpord=1,
s_g_test_gtcls='use',
# SAL
s_s_net='DeepLabv2_ResNet',
s_s_dataset='MSRA',
s_s_datatype='NP',
s_s_test_dataset='voc12train_aug',
s_s_test_datatype='Segmentation',
s_gtcls='use',
s_seedthres=20,
s_salthres=50,
s_guiderule='G2',
s_test_dataset='voc12train_aug',
s_test_datatype='Segmentation',
test_iter=8000,
test_dataset='voc12val',
test_datatype='Segmentation',
test_pcrf=PCRF_TYPE,
test_resize='none',
)
seg_test(control, conf)