-
Notifications
You must be signed in to change notification settings - Fork 117
/
repeat.cpp
328 lines (282 loc) · 10.6 KB
/
repeat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright (C) 2005, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include <cassert>
#include <iomanip>
#include "CoinPragma.hpp"
// For Branch and bound
#include "OsiSolverInterface.hpp"
#include "CbcModel.hpp"
#include "CbcStrategy.hpp"
#include "CbcBranchUser.hpp"
#include "CbcCompareUser.hpp"
#include "CbcCutGenerator.hpp"
#include "CbcHeuristicLocal.hpp"
#include "OsiClpSolverInterface.hpp"
// Cuts
#include "CglGomory.hpp"
#include "CglProbing.hpp"
#include "CglKnapsackCover.hpp"
#include "CglRedSplit.hpp"
#include "CglClique.hpp"
#include "CglFlowCover.hpp"
#include "CglMixedIntegerRounding2.hpp"
// Preprocessing
#include "CglPreProcess.hpp"
// Heuristics
#include "CbcHeuristic.hpp"
#include "CoinTime.hpp"
//#############################################################################
/************************************************************************
This main program reads in an integer model from an mps file.
It then sets up some Cgl cut generators and calls branch and cut.
This is designed to show two things :-
1) Use of CbcStrategy to do preprocessing - this should be cleaner than old way
2) Looping round modifying solver and redoing branch and cut. This uses resetToReferenceCopy
which resets stuff like the cutoff and any memory of previous branch and cut.
************************************************************************/
int main(int argc, const char *argv[])
{
// Define your favorite OsiSolver
OsiClpSolverInterface solver1;
// Read in model using argv[1]
// and assert that it is a clean model
std::string mpsFileName;
#if defined(SAMPLEDIR)
mpsFileName = SAMPLEDIR "/p0033.mps";
#else
if (argc < 2) {
fprintf(stderr, "Do not know where to find sample MPS files.\n");
exit(1);
}
#endif
if (argc >= 2)
mpsFileName = argv[1];
int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(), "");
if (numMpsReadErrors != 0) {
printf("%d errors reading MPS file\n", numMpsReadErrors);
return numMpsReadErrors;
}
double time1 = CoinCpuTime();
/* Options are:
preprocess to do preprocessing
time in minutes
if 2 parameters and numeric taken as time
*/
bool preProcess = false;
double minutes = -1.0;
int nGoodParam = 0;
for (int iParam = 2; iParam < argc; iParam++) {
if (!strcmp(argv[iParam], "preprocess")) {
preProcess = true;
nGoodParam++;
} else if (!strcmp(argv[iParam], "time")) {
if (iParam + 1 < argc && isdigit(argv[iParam + 1][0])) {
minutes = atof(argv[iParam + 1]);
if (minutes >= 0.0) {
nGoodParam += 2;
iParam++; // skip time
}
}
}
}
if (nGoodParam == 0 && argc == 3 && isdigit(argv[2][0])) {
// If time is given then stop after that number of minutes
minutes = atof(argv[2]);
if (minutes >= 0.0)
nGoodParam = 1;
}
if (nGoodParam != argc - 2 && argc >= 2) {
printf("Usage <file> [preprocess] [time <minutes>] or <file> <minutes>\n");
exit(1);
}
//solver1.getModelPtr()->setLogLevel(0);
solver1.messageHandler()->setLogLevel(0);
solver1.initialSolve();
// Reduce printout
solver1.setHintParam(OsiDoReducePrint, true, OsiHintTry);
CbcModel model(solver1);
model.solver()->setHintParam(OsiDoReducePrint, true, OsiHintTry);
// Set up some cut generators and defaults
// Probing first as gets tight bounds on continuous
CglProbing generator1;
generator1.setUsingObjective(true);
generator1.setMaxPass(1);
generator1.setMaxPassRoot(5);
// Number of unsatisfied variables to look at
generator1.setMaxProbe(10);
generator1.setMaxProbeRoot(1000);
// How far to follow the consequences
generator1.setMaxLook(50);
generator1.setMaxLookRoot(500);
// Only look at rows with fewer than this number of elements
generator1.setMaxElements(200);
generator1.setRowCuts(3);
CglGomory generator2;
// try larger limit
generator2.setLimit(300);
CglKnapsackCover generator3;
CglRedSplit generator4;
// try larger limit
generator4.setLimit(200);
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding2 mixedGen;
CglFlowCover flowGen;
// Add in generators
// Experiment with -1 and -99 etc
model.addCutGenerator(&generator1, -1, "Probing");
model.addCutGenerator(&generator2, -1, "Gomory");
model.addCutGenerator(&generator3, -1, "Knapsack");
// model.addCutGenerator(&generator4,-1,"RedSplit");
model.addCutGenerator(&generator5, -1, "Clique");
model.addCutGenerator(&flowGen, -1, "FlowCover");
model.addCutGenerator(&mixedGen, -1, "MixedIntegerRounding");
OsiClpSolverInterface *osiclp = dynamic_cast< OsiClpSolverInterface * >(model.solver());
// go faster stripes
if (osiclp) {
// Turn this off if you get problems
// Used to be automatically set
osiclp->setSpecialOptions(128);
if (osiclp->getNumRows() < 300 && osiclp->getNumCols() < 500) {
//osiclp->setupForRepeatedUse(2,1);
osiclp->setupForRepeatedUse(0, 1);
}
}
// Uncommenting this should switch off most CBC messages
//model.messagesPointer()->setDetailMessages(10,5,5000);
// Allow rounding heuristic
CbcRounding heuristic1(model);
model.addHeuristic(&heuristic1);
// And local search when new solution found
CbcHeuristicLocal heuristic2(model);
model.addHeuristic(&heuristic2);
// Redundant definition of default branching (as Default == User)
CbcBranchUserDecision branch;
model.setBranchingMethod(&branch);
// Definition of node choice
CbcCompareUser compare;
model.setNodeComparison(compare);
// Do initial solve to continuous
model.initialSolve();
// Could tune more
double objValue = model.solver()->getObjSense() * model.solver()->getObjValue();
double minimumDropA = std::min(1.0, fabs(objValue) * 1.0e-3 + 1.0e-4);
double minimumDrop = fabs(objValue) * 1.0e-4 + 1.0e-4;
printf("min drop %g (A %g)\n", minimumDrop, minimumDropA);
model.setMinimumDrop(minimumDrop);
if (model.getNumCols() < 500)
model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible
else if (model.getNumCols() < 5000)
model.setMaximumCutPassesAtRoot(100); // use minimum drop
else
model.setMaximumCutPassesAtRoot(20);
model.setMaximumCutPasses(10);
//model.setMaximumCutPasses(2);
// Switch off strong branching if wanted
// model.setNumberStrong(0);
// Do more strong branching if small
if (model.getNumCols() < 5000)
model.setNumberStrong(10);
model.setNumberStrong(20);
//model.setNumberStrong(5);
model.setNumberBeforeTrust(5);
//model.setSizeMiniTree(2);
model.solver()->setIntParam(OsiMaxNumIterationHotStart, 100);
// If time is given then stop after that number of minutes
if (minutes >= 0.0) {
std::cout << "Stopping after " << minutes << " minutes" << std::endl;
model.setDblParam(CbcModel::CbcMaximumSeconds, 60.0 * minutes);
}
// Switch off most output
if (model.getNumCols() < 3000) {
model.messageHandler()->setLogLevel(1);
//model.solver()->messageHandler()->setLogLevel(0);
} else {
model.messageHandler()->setLogLevel(2);
model.solver()->messageHandler()->setLogLevel(1);
}
// Default strategy will leave cut generators as they exist already
// so cutsOnlyAtRoot (1) ignored
// numberStrong (2) is 5 (default)
// numberBeforeTrust (3) is 5 (default is 0)
// printLevel (4) defaults (0)
CbcStrategyDefault strategy(true, 5, 5);
// Set up pre-processing to find sos if wanted
if (preProcess)
strategy.setupPreProcessing(2);
model.setStrategy(strategy);
// Go round adding cuts to cutoff last solution
// Stop after finding 20 best solutions
for (int iPass = 0; iPass < 20; iPass++) {
time1 = CoinCpuTime();
// Do complete search
model.branchAndBound();
std::cout << mpsFileName << " took " << CoinCpuTime() - time1 << " seconds, "
<< model.getNodeCount() << " nodes with objective "
<< model.getObjValue()
<< (!model.status() ? " Finished" : " Not finished")
<< std::endl;
// Stop if infeasible
if (model.isProvenInfeasible())
break;
// Print solution if finished - we can't get names from Osi! - so get from OsiClp
assert(model.getMinimizationObjValue() < 1.0e50);
OsiSolverInterface *solver = model.solver();
int numberColumns = solver->getNumCols();
const double *solution = model.bestSolution();
//const double * lower = solver->getColLower();
//const double * upper = solver->getColUpper();
// Get names from solver1 (as OsiSolverInterface may lose)
std::vector< std::string > columnNames = *solver1.getModelPtr()->columnNames();
int iColumn;
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14);
std::cout << "--------------------------------------" << std::endl;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value = solution[iColumn];
if (fabs(value) > 1.0e-7 && solver->isInteger(iColumn))
std::cout << std::setw(6) << iColumn << " "
<< columnNames[iColumn] << " "
<< value
//<<" "<<lower[iColumn]<<" "<<upper[iColumn]
<< std::endl;
}
std::cout << "--------------------------------------" << std::endl;
std::cout << std::resetiosflags(std::ios::fixed | std::ios::showpoint | std::ios::scientific);
/* Now add cut to reference copy.
resetting to reference copy also gets rid of best solution so we
should either save best solution, reset, add cut OR
add cut to reference copy then reset - this is doing latter
*/
OsiSolverInterface *refSolver = model.referenceSolver();
const double *bestSolution = model.bestSolution();
#ifndef NDEBUG
const double *originalLower = refSolver->getColLower();
const double *originalUpper = refSolver->getColUpper();
#endif
CoinPackedVector cut;
double rhs = 1.0;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value = bestSolution[iColumn];
if (solver->isInteger(iColumn)) {
// only works for 0-1 variables
assert(originalLower[iColumn] == 0.0 && originalUpper[iColumn] == 1.0);
// double check integer
assert(fabs(floor(value + 0.5) - value) < 1.0e-5);
if (value > 0.5) {
// at 1.0
cut.insert(iColumn, -1.0);
rhs -= 1.0;
} else {
// at 0.0
cut.insert(iColumn, 1.0);
}
}
}
// now add cut
refSolver->addRow(cut, rhs, COIN_DBL_MAX);
model.resetToReferenceSolver();
}
return 0;
}