-
Notifications
You must be signed in to change notification settings - Fork 9.4k
/
Copy pathlatcontrol_torque.py
93 lines (80 loc) · 5.01 KB
/
latcontrol_torque.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import math
import numpy as np
from cereal import log
from opendbc.car.interfaces import LatControlInputs
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.common.pid import PIDController
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_X = [0, 10, 20, 30]
LOW_SPEED_Y = [15, 13, 10, 5]
class LatControlTorque(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.torque_params = CP.lateralTuning.torque.as_builder()
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
self.use_steering_angle = self.torque_params.useSteeringAngle
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
self.torque_params.latAccelFactor = latAccelFactor
self.torque_params.latAccelOffset = latAccelOffset
self.torque_params.friction = friction
def update(self, active, CS, VM, params, steer_limited, desired_curvature, calibrated_pose):
pid_log = log.ControlsState.LateralTorqueState.new_message()
if not active:
output_torque = 0.0
pid_log.active = False
else:
actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
if self.use_steering_angle:
actual_curvature = actual_curvature_vm
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
else:
assert calibrated_pose is not None
actual_curvature_pose = calibrated_pose.angular_velocity.yaw / CS.vEgo
actual_curvature = np.interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_pose])
curvature_deadzone = 0.0
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
# desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
# desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
setpoint, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False)
torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
measurement, lateral_accel_deadzone, friction_compensation=False, gravity_adjusted=False)
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
desired_lateral_accel - actual_lateral_accel, lateral_accel_deadzone, friction_compensation=True,
gravity_adjusted=True)
freeze_integrator = steer_limited or CS.steeringPressed or CS.vEgo < 5
output_torque = self.pid.update(pid_log.error,
feedforward=ff,
speed=CS.vEgo,
freeze_integrator=freeze_integrator)
pid_log.active = True
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.d = float(self.pid.d)
pid_log.f = float(self.pid.f)
pid_log.output = float(-output_torque)
pid_log.actualLateralAccel = float(actual_lateral_accel)
pid_log.desiredLateralAccel = float(desired_lateral_accel)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited))
# TODO left is positive in this convention
return -output_torque, 0.0, pid_log