-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhair_trainer.py
994 lines (837 loc) · 41 KB
/
hair_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
import os
from copy import deepcopy
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from kornia.morphology import dilation, erosion
from dataset.cameras import Camera
from networks.gshair.hairwrapper import GSHairWrapper
from networks.meshface.facewrapper import MeshFaceWrapper
from utils import (
AverageMeter,
CUDA_Timer,
color_mask,
directory,
restore_model,
ssim,
update_lambda,
visimg,
visPositionMap,
write_obj,
)
class HairTrainer:
def __init__(self, config, logger, spatial_lr_scale, all_flame_params=None, is_val=False):
# DEBUG
# torch.autograd.set_detect_anomaly(True)
self.config = config
self.neural = config.get("training.neural_texture", True)
self.img_h, self.img_w = config["data.img_h"], config["data.img_w"]
self.rate_h, self.rate_w = self.img_h / 802.0, self.img_w / 550.0
self.rate = min(self.rate_h, self.rate_w)
self.nan_detect = False
self.is_val = is_val
self.spatial_lr_scale = spatial_lr_scale
self.lr = config["training.learning_rate"]
self.stages = config["training.stages"]
config["training.stages_epoch"] = (
[] if None in config["training.stages_epoch"] else config["training.stages_epoch"]
)
self.stages_epoch = [0] + config["training.stages_epoch"] + [1e10]
assert (
len(self.stages_epoch) - len(self.stages)
) >= -1, "The length of 'training.stages_epoch' should be larger than the length of 'training.stages' - 1."
self.xyz_cond = config.get("flame.xyz_cond", False)
self.move_eyes = config.get("flame.move_eyes", False)
self.parameters_to_train = []
self._init_nets()
# set optimizer
self.optimizer = torch.optim.Adam(self.parameters_to_train, eps=1e-15)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.optimizer, milestones=config["training.step"], gamma=0.1
)
if all_flame_params is not None:
self.init_all_flame_params(all_flame_params)
# Restore checkpoint
checkpoint_path = (
os.path.join(config["local_workspace"], "checkpoint_latest.pth")
if config["training.pretrained_checkpoint_path"] is None
else config["training.pretrained_checkpoint_path"]
)
self.current_epoch = 1
self.global_step = 0
self.stage = self.stages[0]
self.stage_step = 0
if os.path.exists(checkpoint_path):
self.current_epoch, self.global_step, stage, stage_step = restore_model(
checkpoint_path, self.hairwrapper, self.facewrapper, self.optimizer, logger
)
# load optimized flame params
dir_name = os.path.dirname(checkpoint_path)
opt_flame_params = np.load(os.path.join(dir_name, "flame_params.npz"))
if not self.is_val:
self.load_all_flame_params(opt_flame_params)
else:
self.all_flame_params["shape"].data = torch.from_numpy(opt_flame_params["shape"]).cuda()
if stage is not None:
self.stage = stage
self.stage_step = stage_step
self.logger = logger
self.tb_writer = config.get("tb_writer", None)
self._init_data()
self._init_losses()
self._set_stage(self.stage)
# find all lambda
self.all_lambdas = {}
prelen = len("training.lambda_")
for k, v in self.config.items():
if "lambda" not in k or "lambda_update_list" in k:
continue
self.all_lambdas[k[prelen:]] = v
def _freeze(self, label):
for group in self.optimizer.param_groups:
if label == "all" or label in group["name"]:
group["params"][0].requires_grad = False
def _unfreeze(self, label):
for group in self.optimizer.param_groups:
if label == "all" or label in group["name"]:
group["params"][0].requires_grad = True
def _set_stage(self, stage):
if stage == "joint":
self._freeze("all")
self._unfreeze("gs") # train canonical hair
elif stage == "head":
# learn facial mesh
self._freeze("all")
self._unfreeze("head")
else:
self.logger.info("Unknown training stage: {}".format(stage))
exit(1)
def _init_nets(self):
init_pts = np.load(self.config["gs.init_pts"])
self.hairwrapper = GSHairWrapper(self.config, init_pts, self.spatial_lr_scale)
self.facewrapper = MeshFaceWrapper(self.config, self.move_eyes, self.xyz_cond)
self.parameters_to_train = self.hairwrapper.get_optim_params() + self.facewrapper.get_optim_params()
def _init_data(self):
B, H, W = (
self.config["data.per_gpu_batch_size"],
self.config["data.img_h"],
self.config["data.img_w"],
)
self.img = torch.zeros((B, H, W, 3), dtype=torch.float32).cuda()
self.view = torch.zeros((B, 3, 8, 8), dtype=torch.float32).cuda()
self.mask = {}
self.mask["full"] = torch.zeros((B, H, W), dtype=torch.float32).cuda()
self.mask["hair"] = torch.zeros((B, H, W), dtype=torch.float32).cuda()
self.mask["head"] = torch.zeros((B, H, W), dtype=torch.float32).cuda()
self.mask["erode_hair"] = torch.zeros((B, H, W), dtype=torch.float32).cuda()
self.depth_map = torch.zeros((B, H, W), dtype=torch.float32).cuda()
def _init_losses(self):
# TODO: check unuseful losses
self.train_losses = {
"loss": AverageMeter("train_loss"),
"loss_pho/rgb.obj": AverageMeter("train_rgb_obj_loss"),
"loss_pho/rgb.hair": AverageMeter("train_rgb_hair_loss"),
"loss_pho/rgb.head": AverageMeter("train_rgb_head_loss"),
"loss_pho/rgb.basic_head": AverageMeter("train_rgb_basic_head_loss"),
"loss_geo/silh.hair": AverageMeter("train_silh_hair_loss"),
"loss_geo/depth.head": AverageMeter("train_depth_head_loss"),
"loss_geo/normal.head": AverageMeter("train_normal_head_loss"),
"loss_pho/ssim.obj": AverageMeter("train_ssim_obj_loss"),
"loss_pho/ssim.hair": AverageMeter("train_ssim_hair_loss"),
"loss_pho/ssim.head": AverageMeter("train_ssim_head_loss"),
"loss_reg/mesh.laplacian": AverageMeter("train_mesh_laplacian_loss"),
"loss_reg/mesh.normal": AverageMeter("train_mesh_normal_loss"),
"loss_reg/mesh.edges": AverageMeter("train_mesh_edges_loss"),
"loss_reg/mesh.vscale": AverageMeter("train_mesh_vscale_loss"),
"loss_reg/silh.solid_hair": AverageMeter("train_silh_solid_hair_loss"),
}
self.val_losses = {
"loss": AverageMeter("val_loss"),
"metrics/mse": AverageMeter("metrics.mse"),
"metrics/psnr": AverageMeter("metrics.psnr"),
"loss_pho/rgb.obj": AverageMeter("val_rgb_obj_loss"),
"loss_pho/rgb.hair": AverageMeter("val_rgb_hair_loss"),
"loss_pho/rgb.head": AverageMeter("val_rgb_head_loss"),
"loss_pho/rgb.basic_head": AverageMeter("val_rgb_basic_head_loss"),
"loss_geo/silh.hair": AverageMeter("val_silh_hair_loss"),
"loss_geo/depth.head": AverageMeter("val_depth_head_loss"),
"loss_geo/normal.head": AverageMeter("val_normal_head_loss"),
"loss_pho/ssim.obj": AverageMeter("val_ssim_obj_loss"),
"loss_pho/ssim.hair": AverageMeter("val_ssim_hair_loss"),
"loss_pho/ssim.head": AverageMeter("val_ssim_head_loss"),
"loss_reg/mesh.laplacian": AverageMeter("val_mesh_laplacian_loss"),
"loss_reg/mesh.normal": AverageMeter("val_mesh_normal_loss"),
"loss_reg/mesh.edges": AverageMeter("val_mesh_edges_loss"),
"loss_reg/mesh.vscale": AverageMeter("val_mesh_vscale_loss"),
"loss_reg/silh.solid_hair": AverageMeter("val_silh_solid_hair_loss"),
}
def set_train(self):
"""Convert models to training mode"""
self.hairwrapper.set_train()
self.facewrapper.set_train()
def set_eval(self):
"""Convert models to evaluation mode"""
self.hairwrapper.set_eval()
self.facewrapper.set_eval()
def update_stage(self):
try:
cur_id = next(i for i, v in enumerate(self.stages_epoch) if v > self.current_epoch)
except:
cur_id = -1
new_stage = self.stages[cur_id - 1]
if new_stage != self.stage:
# save the final ckpt of the current stage
savepath = os.path.join(
self.config["local_workspace"], "checkpoint_{}_it{}.pth".format(self.stage, self.global_step)
)
self.save_ckpt(savepath)
self.stage = new_stage
self.stage_step = 0
self._set_stage(new_stage)
def train(self, train_loader, val_loader, show_time=False):
torch.cuda.empty_cache()
while self.current_epoch <= self.config["training.epochs"]:
self.update_stage()
success = self.train_epoch(train_loader, val_loader, show_time)
if not success:
return
self.scheduler.step()
self.logger.info("Epoch finished, average losses: ")
for v in self.train_losses.values():
self.logger.info(" {}".format(v))
self.current_epoch += 1
def set_data(self, items):
self.batch_size = items["view"].shape[0]
self.view.resize_as_(items["view"]).copy_(items["view"])
self.img.resize_as_(items["img"]).copy_(items["img"])
self.mask["full"].resize_as_(items["obj_mask"]).copy_(items["obj_mask"])
self.mask["hair"].resize_as_(items["hair_mask"]).copy_(items["hair_mask"])
self.mask["head"].resize_as_(items["head_mask"]).copy_(items["head_mask"])
self.mask["erode_hair"].resize_as_(items["erode_hair_mask"]).copy_(items["erode_hair_mask"])
self.depth_map.resize_as_(items["depth_map"]).copy_(items["depth_map"])
# driving flame params
self.flame_params = {}
frame_idx = items["frame_idx"]
for key, val in self.all_flame_params.items():
if key == "shape":
self.flame_params[key] = val.expand(self.batch_size, -1)
else:
self.flame_params[key] = val[frame_idx]
# build cameras
self.camera = []
for i in range(self.batch_size):
camera = Camera(
R=items["w2c"][i, :3, :3],
t=items["w2c"][i, :3, 3],
intr=items["intr"][i],
zfar=100.0,
znear=0.01,
img_h=self.img_h,
img_w=self.img_w,
name=items["cam"][i],
)
self.camera.append(camera)
self.name = items["name"]
def init_all_flame_params(self, flame_params):
# learnable flame params
T = max(list(flame_params.keys())) + 1
m_id = min(list(flame_params.keys()))
self.all_flame_params = {
"shape": torch.from_numpy(flame_params[m_id]["shape"])[None],
"expr": torch.zeros([T, flame_params[m_id]["expr"].shape[1]]),
"rotation": torch.zeros([T, 3]),
"neck_pose": torch.zeros([T, 3]),
"jaw_pose": torch.zeros([T, 3]),
"eyes_pose": torch.zeros([T, 6]),
"translation": torch.zeros([T, 3]),
}
for i, param in flame_params.items():
self.all_flame_params["expr"][i] = torch.from_numpy(param["expr"])
self.all_flame_params["rotation"][i] = torch.from_numpy(param["rotation"])
self.all_flame_params["neck_pose"][i] = torch.from_numpy(param["neck_pose"])
self.all_flame_params["jaw_pose"][i] = torch.from_numpy(param["jaw_pose"])
self.all_flame_params["eyes_pose"][i] = torch.from_numpy(param["eyes_pose"])
self.all_flame_params["translation"][i] = torch.from_numpy(param["translation"])
for k, v in self.all_flame_params.items():
self.all_flame_params[k] = v.float().cuda()
optimize_params = self.config.get("flame.optimize_params", False)
if (not self.is_val) and optimize_params:
flame_lrs = {"shape": 1e-5, "expr": 1e-3, "pose": 1e-5, "translation": 1e-6}
# shape
self.all_flame_params["shape"].requires_grad = True
param_shape = {
"params": [self.all_flame_params["shape"]],
"lr": flame_lrs["shape"],
"name": "head.flame_shape",
}
self.optimizer.add_param_group(param_shape)
# expression
self.all_flame_params["expr"].requires_grad = True
param_expr = {"params": [self.all_flame_params["expr"]], "lr": flame_lrs["expr"], "name": "head.flame_expr"}
self.optimizer.add_param_group(param_expr)
# pose
self.all_flame_params["rotation"].requires_grad = True
self.all_flame_params["neck_pose"].requires_grad = True
self.all_flame_params["jaw_pose"].requires_grad = True
self.all_flame_params["eyes_pose"].requires_grad = True
params = [
self.all_flame_params["rotation"],
self.all_flame_params["neck_pose"],
self.all_flame_params["jaw_pose"],
self.all_flame_params["eyes_pose"],
]
param_pose = {"params": params, "lr": flame_lrs["pose"], "name": "head.flame_pose"}
self.optimizer.add_param_group(param_pose)
# translation
self.all_flame_params["translation"].requires_grad = True
param_trans = {
"params": [self.all_flame_params["translation"]],
"lr": flame_lrs["translation"],
"name": "head.flame_trans",
}
self.optimizer.add_param_group(param_trans)
def load_all_flame_params(self, all_flame_params):
self.all_flame_params = {k: torch.from_numpy(v).float().cuda() for k, v in all_flame_params.items()}
def load_flame_params(self, flame_params):
"""Used to driving from another flame params"""
self.flame_params = flame_params
for key, val in flame_params.items():
if isinstance(val, np.ndarray):
self.flame_params[key] = torch.from_numpy(val).float().cuda()
elif isinstance(val, torch.Tensor):
self.flame_params[key] = val.float().cuda()
def load_cameras(self, T_c2w, items):
"""Used to render free views"""
for key, val in items.items():
if isinstance(val, np.ndarray):
items[key] = torch.from_numpy(val).cuda()
self.camera = []
for i in range(T_c2w.shape[0]):
w2c = torch.from_numpy(np.linalg.inv(T_c2w[i])).float().cuda()
camera = Camera(
R=w2c[:3, :3],
t=w2c[:3, 3],
intr=items["intr"][i],
zfar=100.0,
znear=0.01,
img_h=self.img_h,
img_w=self.img_w,
name=items["cam"][i],
)
self.camera.append(camera)
views = []
for c2w in T_c2w:
campos = c2w[:3, 3]
view = campos / np.linalg.norm(campos)
views.append(np.tile(view, (8, 8, 1)).transpose((2, 0, 1)))
self.view = torch.from_numpy(np.stack(views, axis=0)).float().cuda()
def compare_depth(self, hair_depth, head_depth):
hair_nz, head_nz = (
torch.ones_like(hair_depth).cuda() * 1e10,
torch.ones_like(head_depth).cuda() * 1e10,
)
valid_hair, valid_head = hair_depth > 0, head_depth > 0
hair_nz[valid_hair] = hair_depth[valid_hair]
head_nz[valid_head] = head_depth[valid_head]
hair_mask = (head_nz > hair_nz).int()
return hair_mask
def fuse(self, rasterized_hair, rasterized_face, is_val=False):
"""To fuse hair image and head image"""
# ablation options
gsdepth = self.config.get("ab.gsdepth", False)
hardblend = self.config.get("ab.hardblend", False)
has_face = rasterized_face is not None
has_hair = rasterized_hair is not None
need_fusion = has_hair and has_face
assert has_face or has_hair, "Please render face, or hair, or both of them. "
outputs = {}
# 1. Hair processing, [B, H, W, 3]
if has_hair:
rendered_hair = rasterized_hair["render"].permute((0, 2, 3, 1))
# 2. Head processing
if has_face:
valid_pixels = rasterized_face["valid_nograd"]
s_id = 3 if self.xyz_cond else 0
rasterized_xyz, rasterized_uv = (
rasterized_face["neural_img"][..., :s_id],
rasterized_face["neural_img"][..., s_id : s_id + 2],
) # [N, 3], [N, 2], [N, tex_ch], N is the num of valid pixels.
tex_ch = self.config["training.tex_ch"] if self.neural else 3
neural_features = rasterized_face["neural_features"]
rasterized_features = F.grid_sample(neural_features, rasterized_uv, mode="bilinear", align_corners=True)
valid_xyz = rasterized_xyz[valid_pixels]
valid_uv = rasterized_uv[valid_pixels]
valid_features = rasterized_features.permute((0, 2, 3, 1))[valid_pixels]
valid_tex = valid_features[..., :tex_ch]
valid_basic_tex = valid_features[..., tex_ch:]
# uv_pe
if self.neural:
rendered_face = self.facewrapper.feats2rgbs(valid_xyz, valid_uv, valid_tex, valid_pixels)
rendered_basic_face = self.facewrapper.feats2rgbs(valid_xyz, valid_uv, valid_basic_tex, valid_pixels)
else:
B, H, W = valid_pixels.shape
rendered_face = torch.ones((B, H, W, 3)).float().cuda()
rendered_face[valid_pixels] = valid_tex
rendered_basic_face = torch.ones((B, H, W, 3)).float().cuda()
rendered_basic_face[valid_pixels] = valid_basic_tex
# 3. Compute fusing mask & fuse
if need_fusion:
hair_depth = rasterized_hair["near_z"] if not gsdepth else rasterized_hair["depth"]
head_depth = rasterized_face["depth"]
hair_mask = self.compare_depth(hair_depth, head_depth)
# TRY: different ways to use hair mask
if is_val:
processed_hair_mask = erosion(hair_mask.unsqueeze(1), torch.ones(3, 3).cuda())
processed_hair_mask = dilation(processed_hair_mask, torch.ones(3, 3).cuda())
processed_hair_mask = dilation(processed_hair_mask, torch.ones(5, 5).cuda())
processed_hair_mask = erosion(processed_hair_mask, torch.ones(5, 5).cuda())
processed_hair_mask = processed_hair_mask[:, 0]
else:
processed_hair_mask = hair_mask
if hardblend:
outputs["raster_hairmask"] = processed_hair_mask
else:
outputs["raster_hairmask"] = rasterized_hair["silhoutte"] * processed_hair_mask
outputs["raster_headmask"] = torch.clip(
rasterized_face["valid_nograd"].float() - outputs["raster_hairmask"], min=0.0, max=1.0
)
outputs["fullmask"] = outputs["raster_headmask"] + outputs["raster_hairmask"]
head_part = outputs["raster_headmask"][..., None].expand(-1, -1, -1, 3)
hair_part = outputs["raster_hairmask"][..., None].expand(-1, -1, -1, 3)
render_fuse = head_part * rendered_face + hair_part * rendered_hair
bg = torch.ones_like(render_fuse).float().cuda()
render_fuse = (1 - outputs["fullmask"])[..., None] * bg + render_fuse
else:
render_fuse = rendered_face if has_face else rendered_hair
# 4. Output results
outputs["render_hair"] = rendered_hair if has_hair else None
outputs["render_face"] = rendered_face if has_face else None
outputs["render_basic_face"] = rendered_basic_face if has_face else None
outputs["render_fuse"] = render_fuse
outputs["hair_depth"] = rasterized_hair["depth"] if has_hair else None
outputs["head_depth"] = rasterized_face["depth"] if has_face else None
outputs["hair_silhoutte"] = rasterized_hair["silhoutte"] if has_hair else None
outputs["occlussion_mask"] = hair_mask if need_fusion else None # no gradients
outputs["head_geomap"] = rasterized_face["rgba"][..., :3] if has_face else None
outputs["raster_hairmask"] = None if "raster_hairmask" not in outputs else outputs["raster_hairmask"]
outputs["raster_headmask"] = None if "raster_headmask" not in outputs else outputs["raster_headmask"]
outputs["fullmask"] = None if "fullmask" not in outputs else outputs["fullmask"]
# DEBUG
# cv2.imwrite('test_rasthair.png', outputs['raster_hairmask'][0, ..., None].detach().cpu().numpy() * 255)
# cv2.imwrite('test_rasthead.png', outputs['raster_headmask'][0, ..., None].detach().cpu().numpy() * 255)
return outputs
def network_forward(self, is_val=False):
rasterized_hair, rasterized_face = None, None
bg_color = [1.0, 1.0, 1.0] # white
rasterized_face, _ = self.facewrapper.render(self.camera, self.flame_params, self.view, bg_color)
if self.stage == "joint":
rasterized_hair = self.hairwrapper.render(self.camera, bg_color)
outputs = self.fuse(rasterized_hair, rasterized_face, is_val=is_val)
return outputs
def update_x(self, lambda_name):
return update_lambda(
self.config["training.lambda_{}".format(lambda_name)],
self.config["training.lambda_{}.slope".format(lambda_name)],
self.config["training.lambda_{}.end".format(lambda_name)],
self.global_step,
self.config["training.lambda_{}.interval".format(lambda_name)],
)
def update_lambda(self):
update_names = self.config["training.lambda_update_list"]
for k, _ in self.all_lambdas.items():
if k in update_names:
self.all_lambdas[k] = self.update_x(k)
def get_lambda(self, key):
return self.all_lambdas.get(key, 0.0)
def compute_loss(self, outputs):
render_rgb = outputs["render_fuse"]
# update hyper-parameters
self.update_lambda()
# RGB Loss
hair_mask = self.mask["hair"]
erode_hair_mask = self.mask["erode_hair"]
head_mask = self.mask["head"]
gt_hair = self.img.clone()
gt_head = self.img.clone()
gt_hair[(1 - hair_mask).bool()] = 1.0
gt_head[hair_mask.bool()] = 1.0
# L2 Loss
rgb_loss = torch.linalg.norm((render_rgb - self.img), dim=-1).mean()
# SSIM Loss
if self.get_lambda("ssim") > 0:
ssim_loss = 1.0 - ssim(render_rgb.permute((0, 3, 1, 2)), self.img.permute((0, 3, 1, 2)))
else:
ssim_loss = torch.tensor(0.0).cuda()
loss_head, loss_head_dict = self.facewrapper.compute_losses(
outputs, self.img, gt_head, self.depth_map, hair_mask, head_mask, self.global_step
)
loss_hair, loss_hair_dict = self.hairwrapper.compute_losses(
outputs, gt_hair, hair_mask, erode_hair_mask, self.global_step
)
loss_joint = self.get_lambda("rgb") * rgb_loss + self.get_lambda("ssim") * ssim_loss
loss_all = {"head": loss_head, "hair": loss_hair, "joint": loss_joint}
loss = 0.0
for name in self.config["training.{}_stage_loss".format(self.stage)]:
loss += loss_all[name]
outputs["gt_hair"] = gt_hair
outputs["gt_head"] = gt_head
loss_dict = {"loss": loss, "loss_pho/rgb.obj": rgb_loss, "loss_pho/ssim.obj": ssim_loss}
# Update with head & hair loss
loss_dict.update(loss_head_dict)
loss_dict.update(loss_hair_dict)
return loss_dict
def log_training(self, epoch, step, global_step, dataset_length, loss_dict):
loss = loss_dict["loss"]
loss_rgb_obj = loss_dict["loss_pho/rgb.obj"]
loss_rgb_hair = loss_dict["loss_pho/rgb.hair"]
loss_rgb_head = loss_dict["loss_pho/rgb.head"]
loss_rgb_basic_head = loss_dict["loss_pho/rgb.basic_head"]
loss_silh_hair = loss_dict["loss_geo/silh.hair"]
loss_depth_head = loss_dict["loss_geo/depth.head"]
loss_normal_head = loss_dict["loss_geo/normal.head"]
loss_ssim_obj = loss_dict["loss_pho/ssim.obj"]
loss_ssim_hair = loss_dict["loss_pho/ssim.hair"]
loss_ssim_head = loss_dict["loss_pho/ssim.head"]
loss_mesh_laplacian = loss_dict["loss_reg/mesh.laplacian"]
loss_mesh_normal = loss_dict["loss_reg/mesh.normal"]
loss_mesh_edges = loss_dict["loss_reg/mesh.edges"]
loss_mesh_vscale = loss_dict["loss_reg/mesh.vscale"]
loss_silh_solid_hair = loss_dict["loss_reg/silh.solid_hair"]
lr = self.scheduler.get_last_lr()[0]
self.logger.info(
"stage [%s] epoch [%.3d] step [%d/%d] global_step = %d loss = %.4f lr = %.6f\n"
" rgb = %.4f w: %.4f\n"
" hair = %.4f w: %.4f\n"
" head = %.4f w: %.4f\n"
" basic_head = %.4f w: %.4f\n"
" silh: \n"
" hair = %.4f w: %.4f\n"
" depth: \n"
" head = %.4f w: %.4f\n"
" normal: \n"
" head = %.4f w: %.4f\n"
" ssim = %.4f w: %.4f\n"
" hair = %.4f w: %.4f\n"
" head = %.4f w: %.4f\n"
" reg: \n"
" mesh_laplacian = %.4f w: %.4f\n"
" mesh_normal = %.4f w: %.4f\n"
" mesh_edges = %.4f w: %.4f\n"
" mesh_vscale = %.4f w: %.4f\n"
" silh_binary = %.4f w: %.4f\n"
% (
self.stage,
epoch,
step,
dataset_length,
self.global_step,
loss.item(),
lr,
loss_rgb_obj.item(),
self.get_lambda("rgb"),
loss_rgb_hair.item(),
self.get_lambda("rgb.hair"),
loss_rgb_head.item(),
self.get_lambda("rgb.head"),
loss_rgb_basic_head.item(),
self.get_lambda("rgb.head"),
loss_silh_hair.item(),
self.get_lambda("silh.hair"),
loss_depth_head.item(),
self.get_lambda("depth.head"),
loss_normal_head.item(),
self.get_lambda("normal.head"),
loss_ssim_obj.item(),
self.get_lambda("ssim"),
loss_ssim_hair.item(),
self.get_lambda("ssim"),
loss_ssim_head.item(),
self.get_lambda("ssim"),
loss_mesh_laplacian.item(),
self.get_lambda("mesh.laplacian"),
loss_mesh_normal.item(),
self.get_lambda("mesh.normal"),
loss_mesh_edges.item(),
self.get_lambda("mesh.edges"),
loss_mesh_vscale.item(),
self.get_lambda("mesh.verts_scale"),
loss_silh_solid_hair.item(),
self.get_lambda("silh.solid_hair"),
)
)
# Write losses to tensorboard
# Update avg meters
for key, value in self.train_losses.items():
if self.tb_writer:
self.tb_writer.add_scalar(key, loss_dict[key].item(), global_step)
value.update(loss_dict[key].item())
def run_eval(self, val_loader):
self.logger.info("Start running evaluation on validation set:")
self.set_eval()
# clear train losses average meter
for val_loss_item in self.val_losses.values():
val_loss_item.reset()
batch_count = 0
with torch.no_grad():
for step, items in enumerate(val_loader):
batch_count += 1
if batch_count % 20 == 0:
self.logger.info(" Eval progress: {}/{}".format(batch_count, len(val_loader)))
self.set_data(items)
outputs = self.network_forward(is_val=True)
loss_dict = self.compute_loss(outputs)
mse, psnr = self.compute_metrics(outputs)
loss_dict["metrics/mse"] = mse
loss_dict["metrics/psnr"] = psnr
self.log_val(step, loss_dict)
# log evaluation result
self.logger.info("Evaluation finished, average losses: ")
for v in self.val_losses.values():
self.logger.info(" {}".format(v))
# Write val losses to tensorboard
if self.tb_writer:
for key, value in self.val_losses.items():
self.tb_writer.add_scalar(key + "//val", value.avg, self.global_step)
self.set_train()
def log_val(self, step, loss_dict):
B = self.batch_size
# loss logging
for key, value in self.val_losses.items():
value.update(loss_dict[key].item(), n=B)
def compute_metrics(self, outputs):
if outputs["fullmask"] is None:
return np.array(0.0), np.array(0.0)
valid_mask = outputs["fullmask"] * self.mask["full"]
gt_img = (self.img[0] * valid_mask[0, ..., None]).detach().cpu().numpy() * 255
pred_img = (outputs["render_fuse"][0] * valid_mask[0, ..., None]).detach().cpu().numpy() * 255
mse = ((pred_img - gt_img) ** 2).mean()
psnr = 10 * np.log10(65025 / mse)
return mse, psnr
def visualization(self, outputs, step, label="log"):
# create dirs
logdir = os.path.join(self.config["local_workspace"], label)
directory(logdir)
if label == "log":
savedir = os.path.join(logdir, "it{}".format(step))
directory(savedir)
elif label == "eval":
savedir = os.path.join(logdir, self.name[0])
directory(savedir)
valid_mask = self.mask["full"] # foreground mask
hair_mask = self.mask["hair"]
face_mask = self.mask["head"]
valid_mask, face_mask, hair_mask = valid_mask.bool(), face_mask.bool(), hair_mask.bool()
# gt_img
savepath = os.path.join(savedir, "gt_it{}.png".format(step))
gt_img = self.img[0].detach().cpu().numpy()
cv2.imwrite(savepath, gt_img * 255)
# image
savepath = os.path.join(savedir, "rendering_it{}.png".format(step))
render_fuse = outputs["render_fuse"][0].detach().cpu().numpy()
cv2.imwrite(savepath, render_fuse * 255)
face_visuals = self.facewrapper.visualize(savedir, outputs, step)
hair_visuals = self.hairwrapper.visualize(savedir, outputs, step)
gt_head, gt_head_normal, render_head, raster_headmask, head_normal, head_geomap, colored_mask = (
face_visuals["gt_head"],
face_visuals["gt_head_normal"],
face_visuals["render_head"],
face_visuals["raster_headmask"],
face_visuals["head_normal"],
face_visuals["head_geomap"],
face_visuals["colored_mask"],
)
gt_hair, raster_hairmask, render_hair = (
hair_visuals["gt_hair"],
hair_visuals["raster_hairmask"],
hair_visuals["render_hair"],
)
# concat img
white_img = np.ones((self.img_h, self.img_w, 3))
savepath = os.path.join(savedir, "combined_it{}.png".format(step))
gt = np.concatenate([gt_img, gt_head, gt_head_normal[..., ::-1], gt_hair], axis=1)
alpha = 0.4
color = [1.0, 0.0, 0.0]
head_withmask = cv2.addWeighted(render_head, 1.0, color_mask(raster_hairmask, color=color), alpha, 0)
hair_withmask = cv2.addWeighted(render_hair, 1.0, color_mask(raster_headmask, color=color), alpha, 0)
pred = np.concatenate([render_fuse, head_withmask, head_normal[..., ::-1], hair_withmask], axis=1)
alpha = 0.5
color_pred = [0.0, 0.0, 0.8]
color_gt = [0.0, 0.6, 0.3]
headmask_gt = face_mask[0, ..., None].detach().cpu().numpy().repeat(3, axis=-1)
hairmask_gt = hair_mask[0, ..., None].detach().cpu().numpy().repeat(3, axis=-1)
headmask_withgt = cv2.addWeighted(
color_mask(raster_headmask, color=color_pred, bg_white=True),
1.0,
color_mask(headmask_gt, color=color_gt),
alpha,
0,
)
hairmask_withgt = cv2.addWeighted(
color_mask(raster_hairmask, color=color_pred, bg_white=True),
1.0,
color_mask(hairmask_gt, color=color_gt),
alpha,
0,
)
mask = np.concatenate([head_geomap, headmask_withgt, colored_mask, hairmask_withgt], axis=1)
combined_img = np.concatenate([gt, pred, mask], axis=0)
cv2.imwrite(savepath, combined_img * 255)
self.facewrapper.visualize_textures(savedir, step)
# fuse mask
if outputs["fullmask"] is not None:
savepath = os.path.join(savedir, "fullmask_it{}.png".format(step))
fullmask = outputs["fullmask"] * self.mask["full"]
cv2.imwrite(savepath, fullmask[0].detach().cpu().numpy() * 255)
# metrics
if label == "eval":
savepath = os.path.join(savedir, "metrics.txt")
mse, psnr = self.compute_metrics(outputs)
with open(savepath, "w") as f:
f.write("MSE: {}\n".format(mse))
f.write("PSNR: {}\n".format(psnr))
print("MSE: {}\nPSNR: {}\n".format(mse, psnr))
def clip_grad(self, max_norm=0.01):
for dict in self.parameters_to_train:
torch.nn.utils.clip_grad_norm_(dict["params"], max_norm)
def save_ckpt(self, savepath, stage=None):
save_dict = {
"optimizer": self.optimizer.state_dict(),
"epoch": self.current_epoch,
"global_step": self.global_step,
"stage": self.stage if stage is None else stage,
"stage_step": self.stage_step,
}
save_dict.update(self.facewrapper.state_dict())
save_dict.update(self.hairwrapper.state_dict())
torch.save(save_dict, savepath)
basedir = os.path.dirname(savepath)
npz_path = os.path.join(basedir, "flame_params.npz")
if os.path.exists(npz_path):
os.remove(npz_path)
flame_params = {k: v.detach().cpu().numpy() for k, v in self.all_flame_params.items()}
np.savez(str(npz_path), **flame_params)
def nan_check(self, loss):
# DEBUG: save the checkpoint before NaN Loss
if not self.nan_detect and loss.isnan().any():
self.nan_detect = True
checkpoint_path = os.path.join(self.config["local_workspace"], "nan_break.pth")
self.save_ckpt(checkpoint_path)
print("NaN break checkpoint has saved at {}".format(checkpoint_path))
print("Data {}".format(self.name))
return False
def train_epoch(self, train_loader, val_loader, show_time=False):
# convert models to traning mode
self.set_train()
warmup_steps = 10
ld_timer = CUDA_Timer("load data", self.logger, valid=show_time, warmup_steps=warmup_steps)
sd_timer = CUDA_Timer("set data", self.logger, valid=show_time, warmup_steps=warmup_steps)
f_timer = CUDA_Timer("forward", self.logger, valid=show_time, warmup_steps=warmup_steps)
cl_timer = CUDA_Timer("compute loss", self.logger, valid=show_time, warmup_steps=warmup_steps)
b_timer = CUDA_Timer("backward", self.logger, valid=show_time, warmup_steps=warmup_steps)
pp_timer = CUDA_Timer("post process", self.logger, valid=show_time, warmup_steps=warmup_steps)
up_timer = CUDA_Timer("update params", self.logger, valid=show_time, warmup_steps=warmup_steps)
ld_timer.start(0)
for step, items in enumerate(train_loader):
step += 1
self.global_step += 1
self.stage_step += 1
if show_time and self.global_step > warmup_steps:
ld_timer.end(step - 1)
if self.stage in ["joint"]:
self.hairwrapper.update_xyz_lr(self.stage_step, self.optimizer)
# 1. Set data for trainer
sd_timer.start(step)
self.set_data(items)
sd_timer.end(step)
# 2. Run the network
f_timer.start(step)
outputs = self.network_forward()
f_timer.end(step)
# 3. Compute losses
cl_timer.start(step)
loss_dict = self.compute_loss(outputs)
cl_timer.end(step)
loss = loss_dict["loss"]
self.nan_check(loss)
# 4. Backprop
b_timer.start(step)
loss.backward()
b_timer.end(step)
# 5. Process Gaussians
pp_timer.start(step)
if self.stage in ["joint"] and self.stage_step % self.config["gs.upSH"] == 0:
self.hairwrapper.oneupSHdegree()
if (
self.stage in ["joint"]
and self.config["training.enable_densify"]
and (self.stage_step < self.config["gs.densify_until_iter"])
):
self.hairwrapper.update_use_flags(self.stage_step)
do_densify = False
do_reset = False
for i in range(self.batch_size):
actual_step = (self.stage_step - 1) * self.batch_size + i + 1
self.hairwrapper.track_gsstates(i)
if (
actual_step > self.config["gs.densify_from_iter"]
and actual_step % self.config["gs.densification_interval"] == 0
):
do_densify = True
if actual_step % (self.config["gs.opacity_reset_interval"]) == 0:
do_reset = True
if i == (self.batch_size - 1) and do_densify:
self.hairwrapper.densify_n_prune(self.optimizer, self.stage_step)
if i == (self.batch_size - 1) and do_reset and self.config["gs.enable_reset"]:
# Save model
checkpoint_path = os.path.join(self.config["local_workspace"], "checkpoint_reset.pth")
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
self.save_ckpt(checkpoint_path)
self.logger.info("Latest checkpoint saved at {}".format(checkpoint_path))
self.hairwrapper.reset_opacities(self.optimizer)
pp_timer.end(step)
up_timer.start(step)
# self.clip_grad()
self.optimizer.step()
self.optimizer.zero_grad(set_to_none=True)
up_timer.end(step)
# logging
if step > 0 and (step % 10 == 0 or step == len(train_loader)):
self.log_training(
self.current_epoch,
step,
self.global_step,
len(train_loader),
loss_dict,
)
# Visualize
if self.stage_step == 1 or self.global_step % self.config["training.visual_interval"] == 0:
self.visualization(outputs, self.global_step)
if self.global_step % 2000 == 0:
# Save model
checkpoint_path = os.path.join(self.config["local_workspace"], "checkpoint_latest.pth")
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
self.save_ckpt(checkpoint_path)
self.logger.info("Latest checkpoint saved at {}".format(checkpoint_path))
if self.global_step > 0 and self.global_step % self.config["training.eval_interval"] == 0:
self.run_eval(val_loader)
# Save model
checkpoint_path = os.path.join(
self.config["local_workspace"],
"checkpoint_%012d.pth" % self.global_step,
)
self.save_ckpt(checkpoint_path)
if show_time and self.global_step > warmup_steps:
ld_timer.start(step)
# DEBUG: CUDA footprint
# free, total = torch.cuda.mem_get_info()
# self.logger.info('free and total mem: {}GB / {}GB'.format(free/1024/1024/1024, total/1024/1024/1024))
# log time
# if show_time:
# self.logger.info(
# "Running Time Profile:" + ld_timer + sd_timer + f_timer + cl_timer + b_timer + pp_timer + up_timer
# )
return True
#