
Deterministic Time-Series Joins for Asynchronous
High-Throughput Data Streams
Christoph Schranz
Salzburg Research
Salzburg, Austria

christoph.schranz@salzburgresearch.at

Peter Michael Jeremias
University of Salzburg

Department of Geoinformatics, Z GIS
Salzburg, Austria

petermichael.jeremias@sbg.ac.at

Abstract—A variety of data stream problems that affect two or
more data streams rely on joining them based on a common or
similar timing attribute. With the advent of stream processing
frameworks like Apache Spark and Apache Flink within the
last years, processing of streamed data has become much easier.
Repeated processing of relatively small data batches in so-called
windows increases flexibility with respect to implementation and
task distribution across multiple nodes. Using event times instead
of ingestion times avoids, among other problems, incorrect joins.
However, in this work we argue that batch-processing leads to a
significant trade-off between increased computational complexity
and latency of the resulting join pairs. A concept for time-series
joins of streaming data is presented. This concept, which is built
upon a resilient data stream framework, minimizes both the
computational costs and latency times. It uses the guarantees
associated with this underlying framework to join the data
records deterministically according to event times instead of
processing times. This work represents a work-in-progress paper,
as detailed benchmarks are pending.

Index Terms—data streaming, IoT, time-join, time-series join,
high-throughput stream join, stream processing

I. INTRODUCTION

Stream processing frameworks (SPF) as Apache Spark and
Apache Flink have gained a lot of momentum within the last
five years and have reached broad industrial acceptance. One
of their most prominent features is their ability to distribute
the processing of streaming data across multiple nodes. This
is very effective for calculation-intensive tasks that can be
parallelized. However, if a task requires only little computation
or cannot be split, SPFs could be ineffective and lead to
increased complexity and latency.

One common class of streaming tasks that fulfills these
properties are time-series joins (TSJ). In contrast to temporal
joins and the better known natural and equi-joins, TSJs don‘t
match two tuples based on the equivalence of their attributes,
but on similarity patterns of their corresponding times. These
join patterns are explained in more detail in section II-B.
The term TSJ differs from temporal join, that is described
by Silberschatz [1] as “a join, with the time of a tuple in the
result being the intersection of the times of the tuples from
which it is derived. If the times do not intersect, the tuple is
removed from the result.”.

This research has been funded by the Austrian Research Promotion Agency
(FFG) and the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT).

The scope of this work is to show, that a class of real stream
problems require a more flexible notion of join, where the
pair of closest tuples of each stream is joined. To achieve
our goal of optimizing the join of asynchronous data streams,
(i) important pre-assumptions are defined and (ii) implications
of the usage of state-of-the-art database systems frameworks
on TSJ problems are depicted. Afterwards, (iii) a concept for
a local stream buffering is presented, that is based on the
discussed assumptions and a state-of-the-art data streaming
technology. This approach optimizes the TSJ in terms of
latency and computational costs with exactly-once processing
guarantee. Finally, (iv) the paper is concluded and an outlook
on further work is given.

It is neither the goal to solve the problem of asynchronous
system times of data producers, nor to question the general
performance of state-of-the-art database systems, as the con-
sidered field of application is narrowed down restrictively to
TSJs of data streams.

II. COMMON STREAM JOINS

In this section an archetypal streaming problem is illus-
trated, that relies on TSJs. Although the specific problem
requires the values of two data streams to be combined, TSJs
can be applied on a broad class of problems that are based on
joining two time series.

A. Data Streaming Problem

The data origins from CNC turning and milling centers
and include, among other quantities, the rotational frequency
n and torsional moment M of their spindles. The quantities
are not streamed periodically with identical timestamps, but a
record is published, whenever its relative value change exceeds
a certain threshold. In order to continuously document the
current effective power, it is required to compute Pt = nt ·Mt

that is the product of the rotational frequency and torsional mo-
ment. However, as the factors are not published synchronously
with identical timestamps, the resulting product has to be
interpolated.

Therefore, a stream processing application should multiply
factors neighbored in time, triggered by new receiving records
and forward the resulting product to a data streaming frame-
work. Hence, each incoming record leads to a join of zero,
one or even multiple pairs. The required relational algebra is

ρschema(t)πr.n·s.M,(r.t+s.t)/2,...(r ./t s), where the operator
./t performs a time-series join (TSJ). The characteristics of
this join type are explained at a later stage.

This scenario requires a low latency and high throughput,
as there are dozens of machines, multiple quantities per
machine and sampling rates of up to 1000 S/s for a single
stream of quantities. Furthermore, some important machine
states are only transmitted occasionally, therefore exactly-
once-processing must be guaranteed.

Apart from this specific problem, it can be shown that a
variety of data streaming problems rely on performing efficient
TSJs of two streams. Merging two data streams or filtering one
data stream based on a value of another requires the join of
their time series in advance.

B. Time-Series Join of Data Streams

In Fig. 1, we can see two examples of how records of the
streams r and s can occur, ordered by their event times. On
the left side, the records rm and sn occur alternating; the join
pairs are marked by red connections between them. On the
right side, the records of stream s occur in a non alternating
pattern, which leads to more than two join partners for the
tuple ri+1.

Fig. 1. Join pairs of two example time series.

The crucial part of time joins in data streams is to join
the correct pairs with minimal latency, even if records of
one data stream are delayed up to a certain threshold. One
kind of join in which two ordered time series are joined,
is called interpolated join within Vertica’s proprietary SQL
derivative [12], that is based on the ANSI SQL-99 standard.
The next paragraph is dedicated to this SQL derivative even
though a whole section is spent on state of the art, because
it helps to explain what we understand by correct time-series
joins.

Vertica’s SQL derivative supports an additional interpolated
join clause, e.g., SELECT * FROM t LEFT OUTER
JOIN t1 ON t.x INTERPOLATE PREVIOUS VALUE
t1.y;, that joins each tuple with the previous tuple of
another table [12]. This leads to a deterministic characteristic,
but may exclude pairs of tuples that are of interest. Consider
the stream join shown on the right side in Fig. 1: The
record sj should be joined with both ri and ri+1, because
∆tsj ,ri+1 could be smaller than ∆tsj ,ri and therefore the
tuple uk = (sj , ri+1) is a more appropriate join. This tuple,
however, is not yielded using Vertica’s INTERPOLATE
PREVIOUS VALUE-syntax, as indicated by the red dashed
lines. Therefore, it would need a UNION of Vertica’s
INTERPOLATE PREVIOUS VALUE- and INTERPOLATE
NEXT VALUE- query, to ensure joining all desired records.

To summarize, the invariance of our TSJ is, that for any
record sj , there are two join partners ri and ri+1 with
the property: ri.t ≤ sj .t < ri+1.t, where the suffix “.t”
denotes the record’s event time. For practical reasons, a join
candidate is discarded, if a given time threshold is exceeded
by ∆t = |rm.t − sn.t|. The same holds analogously for ri.
The considerations imply, that there will be |u| ≤ 2(|r|+ |s|)
join pairs for two continuous input streams r, s and one output
stream u.

This type of join yields a higher number of pairs, as joins
with crossed connection lines are possible, that are illustrated
on the right-hand side of Fig. 1. In this figure, the tuples have
the event time order ri, sj , sj+1, ri+1, therefore (ri, sj+1)
and (sj , ri+1) are crossing, independently of their processing
times.

For some applications, this high number of join pairs is
not required. In order to reduce this high number of pairs, all
potential crossing joins could optionally be forbidden, meaning
that only tuples with the lowest ∆t may join. Sparse joining
reduces the number of join pairs from |u| ≤ 2(|r| + |s|)
down to |u| ≤ |r| + |s|, as each tuple is only joined with
the prior record of the other stream. The case < arises in the
last inequality, if some records are discarded by exceeding a
given time threshold.

C. Requirements

In summary, our deterministic TSJ framework must take the
following features into account.
• Guarantee correct joins of records based on their event

times, i.e, the timestamps the data is sensed, even if some
are delayed up to a given threshold. This also includes
neither to omit any join pair (unless a time threshold is
exceeded), nor to accidentally join an incorrect pair.

• Determinism, i.e., replay join candidates in case the
process crashes and restarts.

• Low-latency, emit resulting join tuples as soon as their
correctness is approved, e.g., into another stream or
pipeline.

• Minimize the required computational costs, allowing high
sample rates and therefore high throughput.

To meet these requirements, the stream processing has to
be built on a robust data streaming framework that supports
these guarantees.

III. STATE OF THE ART

To begin with, the difference between data streaming and
stream processing has to be clarified. As Wampler [4] pointed
out, data streaming refers to the task of delivering data from
a single producer to an arbitrary number of consumers. Some
of its quality criteria are ordering and delivery guarantees,
replay capabilities, data throughput, fault-tolerance, clustering
capabilities, encryption and access control. In contrast to that,
stream processing focuses on the computation of streamed
data. In this section, multiple existing approaches to implement
TSJ are presented.

A. Traditional SQL database systems

For reasons of completeness, it should be depicted how
this problem can be solved with a traditional approach [1].
The state of the database for a given point in time is called
snapshot. Assuming that tuples within two relations R and S
contain their event time and a temporal interval in which the
tuples are valid (e.g. one second). Then, all pairs of tuples
(r, s) : r ∈ R, s ∈ S should be joined, if their respective
time intervals overlap. Not only are these joins not designed
for streaming, but since theta joins are used with a temporal
condition, they are computationally expensive. Vertica’s ANSI
SQL-99 derivative described in section II-B belongs to this
class of traditional SQL database systems, as it is implemented
for snapshots of relations.

B. Stream processing frameworks (SPF)

In contrast to traditional database systems, SPFs are spe-
cialized to process continuous streams of time-series data.
The batch-processing approach is to connect to stateful data
streaming frameworks and to process data using windowing,
i.e., iterative computation of data sequences.

The length of these data frames can be based on time or
on the number of received records. Moreover, there can be
several window-triggering mechanisms. Therefore, windows
are defined problem specific, e.g., some windows are created
each five minutes with the same duration; others are count-
based and created after each ten records and their window span
involve the latest 100 records, meaning that these windows are
overlapping.

For the given class of problem described in Section II, the
following considerations have to be made: (i) A window for
both streams is processed in order to find join pairs. (ii) The
fix duration of the window has to be as high as the maximal
accepted time delay of a record. (iii) The achieved latency is
influenced by a window-triggering interval. The lower the in-
terval, the higher the number of created windows and therefore
the number of potential join candidates. These considerations
reveal a weakness of window-based stream joins, as they lead
to a trade-off between join latency and computational cost
associated with increased storage utilization.

Assuming, there are two streams of data r and s, both with a
sample rate of 1000 records per second. The highest accepted
delay of a record, and consequently the window duration, is
one second and the maximal additional latency should not
exceed 50 ms. Therefore, a single join of two windows leads
to 1000 · 1000 = 106 pairs that have to be filtered. To ensure
a low latency, this join is performed each 50 ms, leading to
1s/50ms·106 = 2·107 pairs per second, although the resulting
join rate can be upper bounded by |u̇| ≤ 2(|ṙ|+|ṡ|) = 4000/s.

This heuristic demonstrates the necessity to optimize TSJs
for asynchronous data streams. However, leading SPFs such
as Apache Spark, Apache Flink or ksqlDB do not take this
into account. [3], [5], [6], [8] As SPFs strongly optimize their
process before execution and therefore reduce the number of
join candidates by filtering in advance, a direct comparison
of multiple frameworks for the same task is of interest.

Unfortunately, data throughput tests of TSJ were not found
so far, although there are benchmarks for regular equi-joins
between Apache Flink and Apache Spark. [6].

C. State stores

Some joins of streams are based on storing the latest states
of streams in a key-value store which uses an index-key to
look up the respective value [7]. E.g., Kafka Streams is able to
perform stream-stream joins from version 0.10.2.0 on [9] [8].
Apache Samza and ksqlDB are using the RocksDB key-value
store underneath [10], [11], but implement windowing as well.

A disadvantage of this approach is, that it increases the
latency, because each new record in the stream leads to one
or multiple look-ups in the key-value store [8]. Because both
streams have a high sample rate, leading to a high number
of OLTP (Online Transactional Processing) to update the
respective states, the usage of key-value stores leads to serious
performance lacks. Moreover, key-value stores are based on
hashing [2] and are therefore not optimized for the efficient
processing of range queries, that are required for TSJs.

IV. LOCAL STREAM BUFFERING APPROACH

As discussed in the previous section, the generality of state-
of-the-art SPFs may solve a wide range of problems, but it
goes hand in hand with a trade-off between increased latency
and computational costs for time-series join (TSJ). In this
section, we present a concept for TSJ based on event time,
that optimizes both data throughput and latency.

A. Assumptions

We assume the prerequisites, that (i) the records in each
input data stream distinguish in their event times and (ii)
are received in the correct chronological order. There are
multiple data streaming frameworks, such as Apache Kafka
and Amazon’s Kinesis, that guarantee the correct order of
records using unique keys. Furthermore, (iii) statefulness of
a stream has to be ensured. From the consumer’s side, this
means to distinguish between the consumption of a record
and the commitment that a record was received and there
is no necessity to receive it again. Both named frameworks
guarantee at-least-once delivery (Apache Kafka even exactly-
once delivery) and provide replay capability [4], [11], [13].

B. Concept

The main data structure is a composition of two FIFO (first
in, first out) queues, implemented as linked lists. These queues
buffer all records of r and s, that could find a join partner in
future records. While new records are respectively enqueued
and possible join pairs are identified, tuples that cannot find
any further join partners are dequeued.

In Fig. 2, six examples of records from the streams r and
s are illustrated, whereby the records ri, sj are ordered by
event time. An important insight is, that all possible states of
the buffers that imply any action, involving those described in
Fig. 1, can be reduced to one of these six cases (each three
of them are symmetrical). An action is either the join of two
tuples or the deletion of the least recent record from the buffer.

The red lines connecting ri and sj represent a join-pair. In
case A, the record sj is joined with ri and ri+1, as they are
the previous respectively subsequent record in r based on their
event time. The correctness of the joins in case B is approved
by the guarantee that all records within the same stream are in
order. This means, that the ingestion of ri+1 in B guarantees,
that there won’t be any record with a timestamp between those
of ri and ri+1, formally: ∃!r′ : ri.t < r′t < ri+1.t. This holds
analogously for D and E. Therefore, all pairs connected by a
red line must be join partners.

Fig. 2. Six cases that trigger a join of ri and sj .

The second type of action is a commit, represented by red
diamonds. A commit is needed in case B (and E), where a
record can’t find any further join partner, as the more recent
record ri+1 prevents the record ri from joining with future sk :
k > j. This marked record is then committed as obsolete to
the data streaming framework and is simultaneously removed
from the buffer. This mechanism is required to ensure at-least-
once processing, in case the join processor fails and restarts.
Then, each record lost in the buffer is received again.

Lastly, in cases C and F an exceedance of a time threshold
∆t leads to an omission. This timeout has two advantages:
First, the additional latency of yielded joins is upper bounded
by this timeout. Second, the stream buffer is protected from a
memory overflow in the event, that values in one stream are
stored for an extended period of time and no join partners are
found in the other stream. Analog to inner, left, right and full
outer joins, a preferred join behaviour for records that can’t
find any join partner can be considered.

V. CONCLUSION & FURTHER WORK

In this work, it was shown that a class of data streaming
problems can benefit from efficient time-series joins (TSJs)
with regard to low-latency, minimal computational costs and
deterministic behavior even if some records may delay. We
investigated traditional relational databases, stream processing
frameworks and state stores and found that they are not
optimized in terms of low-latency and high-throughput of
time-series joins. Therefore, a concept was proposed, that is
specialized in performing efficient TSJs of data streams and
fits the identified functional requirements.

As SPFs clearly optimize queries to a high degree, bench-
marks are required for a detailed comparison. Intensive tests
are planned within the next months, that will not only cover the

introduced problem, but also some applications for that SPFs
can play their strengths when it comes to task distribution
capabilities.

The current implementation of the proposed local stream
buffer can be found in this Github repository 1. In a follow-
up paper the benchmarks of this solution are presented. In
addition, a larger number of state-of-the-art approaches is
considered and the field of application of the proposed work
is outlined in detail.

ACKNOWLEDGMENT

This research has been funded by the Austrian Research
Promotion Agency (FFG) and the Austrian Federal Ministry
for Transport, Innovation and Technology (BMVIT), within
the project IoT4CPS (Trustworthy IoT for CPS) (12/2017-
11/2020).

REFERENCES

[1] Abraham Silberschatz, Henry F. Korth, S. Sudarshan, “Database System
Concepts,” McGraw-Hill, 2010, 6th Edition, p. 1064.

[2] Abraham Silberschatz, Henry F. Korth, S. Sudarshan, “Database System
Concepts,” McGraw-Hill, 2010, 6th Edition, p. 799.

[3] Spark Blog post, “Stream-stream joins,”
https://databricks.com/blog/2018/03/13/introducing-stream-stream-
joins-in-apache-spark-2-3.html, 2018.

[4] D. Wampler, “Fast Data Architectures,” O’Reilly Media, 2 edition, 2016.
[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.

Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., 38:28–38, 2015.

[6] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, V.
Markl, “Benchmarking distributed stream data processing systems,”
IEEE 34th International Conference on Data Engineering, 24-06-2019.

[7] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
p. 14-15, 2011.

[8] Confluent, “Distributed, Real-time Joins and Aggregations
on User Activity Events using Kafka Streams,” blog post,
https://www.confluent.io/blog/distributed-real-time-joins-and-
aggregations-on-user-activity-events-using-kafka-streams/, 2016.

[9] Confluence Wiki for Kafka, “Kafka Streams Join Semantics,”
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+
Join+Semantics, 2018.

[10] Confluent, “Introducing ksqlDB,” blog post,
https://www.confluent.io/blog/intro-to-ksqldb-sql-database-streaming/,
2019, last updated: 13.03.2020.

[11] M. Kleppmann, J. Kreps, “Kafka, Samza and the Unix Philosophy
of Distributed Data,” IBulletin of the Technical Committee on Data
Engineering, p. 10, 2015.

[12] HP Vertica Analytic Database, “SQL Reference Manual,”, online re-
source https://usermanual.wiki/Pdf/HPVertica70xSQLReferenceManual.
195394116/view, p. 39, 95-99, 24-02-2014.

[13] AWS Kinesis developer guide, “Handling Duplicate Records,”, online
resource https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-
processor-duplicates.html, 6.5.2019.

1Github, StatefulStreamProcessor: https://github.com/ChristophSchranz/
StatefulStreamProcessor/blob/master/05 LocalStreamBuffer/local stream buffer.py

