-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·542 lines (421 loc) · 21.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#!/usr/bin/env python
import argparse
import math
import os
import random
import shutil
import time
import warnings
from tqdm import tqdm
import numpy as np
import faiss
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.models as models
import loader
import builder
from sklearn.metrics.pairwise import cosine_similarity
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data-A', metavar='DIR Domain A', help='path to domain A dataset')
parser.add_argument('--data-B', metavar='DIR Domain B', help='path to domain B dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 2x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--clean-model', default='', type=str, metavar='PATH',
help='path to clean model (default: none)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=0, type=int,
help='GPU id to use.')
parser.add_argument('--low-dim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--moco-m', default=0.999, type=float,
help='moco momentum of updating key encoder (default: 0.999)')
parser.add_argument('--temperature', default=0.2, type=float,
help='softmax temperature')
parser.add_argument('--warmup-epoch', default=20, type=int,
help='number of warm-up epochs to only train with InfoNCE loss')
parser.add_argument('--mlp', action='store_true',
help='use mlp head')
parser.add_argument('--aug-plus', action='store_true',
help='use moco-v2/SimCLR data augmentation')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
parser.add_argument('--exp-dir', default='experiment_pcl', type=str,
help='the directory of the experiment')
parser.add_argument('--ckpt-save', default=20, type=int,
help='the frequency of saving ckpt')
parser.add_argument('--num-cluster', default='250,500,1000', type=str,
help='number of clusters for self entropy loss')
parser.add_argument('--instcon-weight', default=1.0, type=float,
help='the weight for instance contrastive loss after warm up')
parser.add_argument('--cwcon-weightstart', default=0.0, type=float,
help='the starting weight for cluster-wise contrastive loss')
parser.add_argument('--cwcon-weightsature', default=1.0, type=float,
help='the satuate weight for cluster-wise contrastive loss')
parser.add_argument('--cwcon-startepoch', default=20, type=int,
help='the start epoch for scluster-wise contrastive loss')
parser.add_argument('--cwcon-satureepoch', default=100, type=int,
help='the saturated epoch for cluster-wise contrastive loss')
parser.add_argument('--cwcon-filterthresh', default=0.2, type=float,
help='the threshold of filter for cluster-wise contrastive loss')
parser.add_argument('--selfentro-temp', default=0.2, type=float,
help='the temperature for self-entropy loss')
parser.add_argument('--selfentro-startepoch', default=20, type=int,
help='the start epoch for self entropy loss')
parser.add_argument('--selfentro-weight', default=20, type=float,
help='the start weight for self entropy loss')
parser.add_argument('--distofdist-startepoch', default=20, type=int,
help='the start epoch for dist of dist loss')
parser.add_argument('--distofdist-weight', default=20, type=float,
help='the start weight for dist of dist loss')
parser.add_argument('--prec-nums', default='1,5,15', type=str,
help='the evaluation metric')
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
args.num_cluster = args.num_cluster.split(',')
if not os.path.exists(args.exp_dir):
os.mkdir(args.exp_dir)
main_worker(args.gpu, args)
def main_worker(gpu, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
print("=> creating model '{}'".format(args.arch))
cudnn.benchmark = True
traindirA = os.path.join(args.data_A, 'train')
traindirB = os.path.join(args.data_B, 'train')
train_dataset = loader.TrainDataset(traindirA, traindirB, args.aug_plus)
eval_dataset = loader.EvalDataset(traindirA, traindirB)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None, drop_last=True)
eval_loader = torch.utils.data.DataLoader(
eval_dataset, batch_size=args.batch_size * 2, shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=None)
model = builder.UCDIR(
models.__dict__[args.arch],
dim=args.low_dim, K_A=eval_dataset.domainA_size, K_B=eval_dataset.domainB_size,
m=args.moco_m, T=args.temperature, mlp=args.mlp, selfentro_temp=args.selfentro_temp,
num_cluster=args.num_cluster, cwcon_filterthresh=args.cwcon_filterthresh)
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.clean_model:
if os.path.isfile(args.clean_model):
print("=> loading pretrained clean model '{}'".format(args.clean_model))
loc = 'cuda:{}'.format(args.gpu)
clean_checkpoint = torch.load(args.clean_model, map_location=loc)
current_state = model.state_dict()
used_pretrained_state = {}
for k in current_state:
if 'encoder' in k:
k_parts = '.'.join(k.split('.')[1:])
used_pretrained_state[k] = clean_checkpoint['state_dict']['module.encoder_q.'+k_parts]
current_state.update(used_pretrained_state)
model.load_state_dict(current_state)
else:
print("=> no clean model found at '{}'".format(args.clean_model))
info_save = open(os.path.join(args.exp_dir, 'info.txt'), 'w')
best_res_A = [0., 0., 0.]
best_res_B = [0., 0., 0.]
for epoch in range(args.epochs):
features_A, features_B, _, _ = compute_features(eval_loader, model, args)
features_A = features_A.numpy()
features_B = features_B.numpy()
if epoch == 0:
model.queue_A.data = torch.tensor(features_A).T.cuda()
model.queue_B.data = torch.tensor(features_B).T.cuda()
cluster_result = None
if epoch >= args.warmup_epoch:
cluster_result = run_kmeans(features_A, features_B, args)
adjust_learning_rate(optimizer, epoch, args)
train(train_loader, model, criterion, optimizer, epoch, args, info_save, cluster_result)
features_A, features_B, targets_A, targets_B = compute_features(eval_loader, model, args)
features_A = features_A.numpy()
targets_A = targets_A.numpy()
features_B = features_B.numpy()
targets_B = targets_B.numpy()
prec_nums = args.prec_nums.split(',')
res_A, res_B = retrieval_precision_cal(features_A, targets_A, features_B, targets_B,
preck=(int(prec_nums[0]), int(prec_nums[1]), int(prec_nums[2])))
if (best_res_A[0] + best_res_B[0]) / 2 < (res_A[0] + res_B[0]) / 2:
best_res_A = res_A
best_res_B = res_B
info_save.write("Domain A->B: P@{}: {}; P@{}: {}; P@{}: {} \n".format(int(prec_nums[0]), best_res_A[0],
int(prec_nums[1]), best_res_A[1],
int(prec_nums[2]), best_res_A[2]))
info_save.write("Domain B->A: P@{}: {}; P@{}: {}; P@{}: {} \n".format(int(prec_nums[0]), best_res_B[0],
int(prec_nums[1]), best_res_B[1],
int(prec_nums[2]), best_res_B[2]))
def train(train_loader, model, criterion, optimizer, epoch, args, info_save, cluster_result):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = {'Inst_A': AverageMeter('Inst_Loss_A', ':.4e'),
'Inst_B': AverageMeter('Inst_Loss_B', ':.4e'),
'Cwcon_A': AverageMeter('Cwcon_Loss_A', ':.4e'),
'Cwcon_B': AverageMeter('Cwcon_Loss_B', ':.4e'),
'SelfEntropy': AverageMeter('Loss_SelfEntropy', ':.4e'),
'DistLogits': AverageMeter('Loss_DistLogits', ':.4e'),
'Total_loss': AverageMeter('Loss_Total', ':.4e')}
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time,
losses['SelfEntropy'],
losses['DistLogits'],
losses['Total_loss'],
losses['Inst_A'], losses['Inst_B'],
losses['Cwcon_A'], losses['Cwcon_B']],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images_A, image_ids_A, images_B, image_ids_B, cates_A, cates_B) in enumerate(train_loader):
data_time.update(time.time() - end)
if args.gpu is not None:
images_A[0] = images_A[0].cuda(args.gpu, non_blocking=True)
images_A[1] = images_A[1].cuda(args.gpu, non_blocking=True)
image_ids_A = image_ids_A.cuda(args.gpu, non_blocking=True)
images_B[0] = images_B[0].cuda(args.gpu, non_blocking=True)
images_B[1] = images_B[1].cuda(args.gpu, non_blocking=True)
image_ids_B = image_ids_B.cuda(args.gpu, non_blocking=True)
losses_instcon, \
q_A, q_B, \
losses_selfentro, \
losses_distlogits, \
losses_cwcon = model(im_q_A=images_A[0], im_k_A=images_A[1],
im_id_A=image_ids_A, im_q_B=images_B[0],
im_k_B=images_B[1], im_id_B=image_ids_B,
cluster_result=cluster_result,
criterion=criterion)
inst_loss_A = losses_instcon['domain_A']
inst_loss_B = losses_instcon['domain_B']
losses['Inst_A'].update(inst_loss_A.item(), images_A[0].size(0))
losses['Inst_B'].update(inst_loss_B.item(), images_B[0].size(0))
loss_A = inst_loss_A * args.instcon_weight
loss_B = inst_loss_B * args.instcon_weight
if epoch >= args.warmup_epoch:
cwcon_loss_A = losses_cwcon['domain_A']
cwcon_loss_B = losses_cwcon['domain_B']
losses['Cwcon_A'].update(cwcon_loss_A.item(), images_A[0].size(0))
losses['Cwcon_B'].update(cwcon_loss_B.item(), images_B[0].size(0))
if epoch <= args.cwcon_startepoch:
cur_cwcon_weight = args.cwcon_weightstart
elif epoch < args.cwcon_satureepoch:
cur_cwcon_weight = args.cwcon_weightstart + (args.cwcon_weightsature - args.cwcon_weightstart) * \
((epoch - args.cwcon_startepoch) / (args.cwcon_satureepoch - args.cwcon_startepoch))
else:
cur_cwcon_weight = args.cwcon_weightsature
loss_A += cwcon_loss_A * cur_cwcon_weight
loss_B += cwcon_loss_B * cur_cwcon_weight
all_loss = (loss_A + loss_B) / 2
if epoch >= args.selfentro_startepoch:
losses_selfentro_list = []
for key in losses_selfentro.keys():
losses_selfentro_list.extend(losses_selfentro[key])
losses_selfentro_mean = torch.mean(torch.stack(losses_selfentro_list))
losses['SelfEntropy'].update(losses_selfentro_mean.item(), images_A[0].size(0))
all_loss += losses_selfentro_mean * args.selfentro_weight
if epoch >= args.distofdist_startepoch:
losses_distlogits_list = []
for key in losses_distlogits.keys():
losses_distlogits_list.extend(losses_distlogits[key])
losses_distlogits_mean = torch.mean(torch.stack(losses_distlogits_list))
losses['DistLogits'].update(losses_distlogits_mean.item(), images_A[0].size(0))
all_loss += losses_distlogits_mean * args.distofdist_weight
losses['Total_loss'].update(all_loss.item(), images_A[0].size(0))
optimizer.zero_grad()
all_loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
info = progress.display(i)
info_save.write(info + '\n')
def compute_features(eval_loader, model, args):
print('Computing features...')
model.eval()
features_A = torch.zeros(eval_loader.dataset.domainA_size, args.low_dim).cuda()
features_B = torch.zeros(eval_loader.dataset.domainB_size, args.low_dim).cuda()
targets_all_A = torch.zeros(eval_loader.dataset.domainA_size, dtype=torch.int64).cuda()
targets_all_B = torch.zeros(eval_loader.dataset.domainB_size, dtype=torch.int64).cuda()
for i, (images_A, indices_A, targets_A, images_B, indices_B, targets_B) in enumerate(tqdm(eval_loader)):
with torch.no_grad():
images_A = images_A.cuda(non_blocking=True)
images_B = images_B.cuda(non_blocking=True)
targets_A = targets_A.cuda(non_blocking=True)
targets_B = targets_B.cuda(non_blocking=True)
feats_A, feats_B = model(im_q_A=images_A, im_q_B=images_B, is_eval=True)
features_A[indices_A] = feats_A
features_B[indices_B] = feats_B
targets_all_A[indices_A] = targets_A
targets_all_B[indices_B] = targets_B
return features_A.cpu(), features_B.cpu(), targets_all_A.cpu(), targets_all_B.cpu()
def run_kmeans(x_A, x_B, args):
print('performing kmeans clustering')
results = {'im2cluster_A': [], 'centroids_A': [],
'im2cluster_B': [], 'centroids_B': []}
for domain_id in ['A', 'B']:
if domain_id == 'A':
x = x_A
elif domain_id == 'B':
x = x_B
else:
x = np.concatenate([x_A, x_B], axis=0)
for seed, num_cluster in enumerate(args.num_cluster):
# intialize faiss clustering parameters
d = x.shape[1]
k = int(num_cluster)
clus = faiss.Clustering(d, k)
clus.verbose = True
clus.niter = 20
clus.nredo = 5
clus.seed = seed
clus.max_points_per_centroid = 2000
clus.min_points_per_centroid = 2
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = args.gpu
index = faiss.IndexFlatL2(d)
clus.train(x, index)
D, I = index.search(x, 1) # for each sample, find cluster distance and assignments
im2cluster = [int(n[0]) for n in I]
# get cluster centroids
centroids = faiss.vector_to_array(clus.centroids).reshape(k, d)
# convert to cuda Tensors for broadcast
centroids = torch.Tensor(centroids).cuda()
centroids_normed = nn.functional.normalize(centroids, p=2, dim=1)
im2cluster = torch.LongTensor(im2cluster).cuda()
results['centroids_'+domain_id].append(centroids_normed)
results['im2cluster_'+domain_id].append(im2cluster)
return results
def retrieval_precision_cal(features_A, targets_A, features_B, targets_B, preck=(1, 5, 15)):
dists = cosine_similarity(features_A, features_B)
res_A = []
res_B = []
for domain_id in ['A', 'B']:
if domain_id == 'A':
query_targets = targets_A
gallery_targets = targets_B
all_dists = dists
res = res_A
else:
query_targets = targets_B
gallery_targets = targets_A
all_dists = dists.transpose()
res = res_B
sorted_indices = np.argsort(-all_dists, axis=1)
sorted_cates = gallery_targets[sorted_indices.flatten()].reshape(sorted_indices.shape)
correct = (sorted_cates == np.tile(query_targets[:, np.newaxis], sorted_cates.shape[1]))
for k in preck:
total_num = 0
positive_num = 0
for index in range(all_dists.shape[0]):
temp_total = min(k, (gallery_targets == query_targets[index]).sum())
pred = correct[index, :temp_total]
total_num += temp_total
positive_num += pred.sum()
res.append(positive_num / total_num * 100.0)
return res_A, res_B
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
return ' '.join(entries)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.5 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()